Dithioether Ligands (dithioether + ligand)

Distribution by Scientific Domains


Selected Abstracts


Construction of 1D and 2D Copper(I) Coordination Polymers Assembled by PhS(CH2)nSPh (n = 1, 2) Dithioether Ligands: Surprising Effect of the Spacer Length on the Dimensionality, Cluster Nuclearity and the Fluorescence Properties of the Metal,Organic Framework,

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 13 2007
Harmel N. Peindy
Abstract Treatment of CuI with PhSCH2SPh in MeCN solution affords, by a self-assembly reaction, the monodimensional metal,organic coordination polymer [Cu4I4{,-PhS2CH2SPh}2]n (1), in which Cu4(,3 -I)4 cluster units are linked by the dithioether ligand in a 1D necklace structure. In contrast, the reaction of PhSCH2CH2SPh with CuI results in the formation of the metallopolymer [(CuI)2{,-PhS(CH2)2SPh}2]n (2). The 2D network of 2 is built from dimeric Cu2I2 units which are connected by 1,2-bis(phenylthio)ethane bridging ligands. The solid-state luminescence spectrum of 1 exhibits a strong emission around 532 nm, whereas a weak emission centred at 413 nm is observed in the case of 2. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


Cationic Iridium Complexes with Chiral Dithioether Ligands: Synthesis, Characterisation and Reactivity under Hydrogenation Conditions

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 12 2005
Leticia Flores-Santos
Abstract A series of cationic IrI complexes containing chiral dithioether ligands have been prepared in order to study the influence of the sulfur substituents and the metallacycle size on the acetamidoacrylate hydrogenation reaction. In the case of complexes 6, 7 and 10, a mixture of diastereomers is observed in solution due to the sulfur inversion processes. In contrast, this fluxional behaviour is efficiently controlled by using bicyclic ligands which inhibit the S-inversion in complexes 8 and 9. The solid-state structure of complex 10b shows only one diastereomer with the sulfur substituents in a relative anti disposition and in an overall configuration of SCSCSSSS at the coordinated dithioether ligand. Iridium complexes containing seven- and six-membered metallacycles (6b,d, 7b,c, 10a,b) react with the substrate through S-ligand substitution, and the rate of this substitution is related to the position of the fluorine atom on the aromatic ring. On the contrary, complexes containing a bismetallacycle (8 and 9) are not displaced by the substrate. The catalytic hydrogenation activity of complexes 8 and 9 is analysed in terms of the high stability of the corresponding dihydride complexes (13 and 14). In both cases, only two of the four possible diastereomeric dihydride species are formed in solution. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


Dithioether ligands containing a 2,6-disubstituted pyridine linker with two thioether-heterocycle arms

ACTA CRYSTALLOGRAPHICA SECTION C, Issue 1 2010
Archimede Rotondo
The structure of 2,6-bis(2-pyridyltsulfanylmethyl)pyridine (pytmp), (I), C17H15N3S2, presents a twisted conformation, with the three planar moieties almost perpendicular to each other. The structures of two related derivatives, namely 2,6-bis(6-methyl-2-pyridylsulfanylmethyl)pyridine (mpytmp), (II), C19H19N3S2, and 2,6-bis(4-methyl-2-pyrimidylsulfanylmethyl)pyridine (mprtmp) n- pentane hemisolvate, (III), C17H17N5S2·0.5C5H12, present extended planar fragments with just one quasi-perpendicular arylsulfanylmethyl side arm, such that the molecules are folded in an L-shaped conformation. All three conformations appear different from those adopted by similar compounds, demonstrating the great flexibility of such species, although such differences in conformational behaviour might drive specific coordination modes. [source]


Construction of 1D and 2D Copper(I) Coordination Polymers Assembled by PhS(CH2)nSPh (n = 1, 2) Dithioether Ligands: Surprising Effect of the Spacer Length on the Dimensionality, Cluster Nuclearity and the Fluorescence Properties of the Metal,Organic Framework,

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 13 2007
Harmel N. Peindy
Abstract Treatment of CuI with PhSCH2SPh in MeCN solution affords, by a self-assembly reaction, the monodimensional metal,organic coordination polymer [Cu4I4{,-PhS2CH2SPh}2]n (1), in which Cu4(,3 -I)4 cluster units are linked by the dithioether ligand in a 1D necklace structure. In contrast, the reaction of PhSCH2CH2SPh with CuI results in the formation of the metallopolymer [(CuI)2{,-PhS(CH2)2SPh}2]n (2). The 2D network of 2 is built from dimeric Cu2I2 units which are connected by 1,2-bis(phenylthio)ethane bridging ligands. The solid-state luminescence spectrum of 1 exhibits a strong emission around 532 nm, whereas a weak emission centred at 413 nm is observed in the case of 2. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


Cationic Iridium Complexes with Chiral Dithioether Ligands: Synthesis, Characterisation and Reactivity under Hydrogenation Conditions

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 12 2005
Leticia Flores-Santos
Abstract A series of cationic IrI complexes containing chiral dithioether ligands have been prepared in order to study the influence of the sulfur substituents and the metallacycle size on the acetamidoacrylate hydrogenation reaction. In the case of complexes 6, 7 and 10, a mixture of diastereomers is observed in solution due to the sulfur inversion processes. In contrast, this fluxional behaviour is efficiently controlled by using bicyclic ligands which inhibit the S-inversion in complexes 8 and 9. The solid-state structure of complex 10b shows only one diastereomer with the sulfur substituents in a relative anti disposition and in an overall configuration of SCSCSSSS at the coordinated dithioether ligand. Iridium complexes containing seven- and six-membered metallacycles (6b,d, 7b,c, 10a,b) react with the substrate through S-ligand substitution, and the rate of this substitution is related to the position of the fluorine atom on the aromatic ring. On the contrary, complexes containing a bismetallacycle (8 and 9) are not displaced by the substrate. The catalytic hydrogenation activity of complexes 8 and 9 is analysed in terms of the high stability of the corresponding dihydride complexes (13 and 14). In both cases, only two of the four possible diastereomeric dihydride species are formed in solution. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]