Developmental Mode (developmental + mode)

Distribution by Scientific Domains

Selected Abstracts

Short and long germ segmentation: unanswered questions in the evolution of a developmental mode

Paul Z. Liu
Summary The insect body plan is very well conserved, yet the developmental mechanisms of segmentation are surprisingly varied. Less evolutionarily derived insects undergo short germ segmentation where only the anterior segments are specified before gastrulation whereas the remaining posterior segments are formed during a later secondary growth phase. In contrast, derived long germ insects such as Drosophila specify their entire bodies essentially simultaneously. These fundamental embryological differences imply potentially divergent molecular patterning events. Numerous studies have focused on comparing the expression and function of the homologs of Drosophila segmentation genes between Drosophila and different short and long germ insects. Here we review these comparative data with special emphasis on understanding how short germ insects generate segments and how this ancestral mechanism may have been modified in derived long germ insects such as Drosophila. We break down the larger issue of short versus long germ segmentation into its component developmental problems and structure our discussion in order to highlight the unanswered questions in the evolution of insect segmentation. [source]

Thyroid hormones determine developmental mode in sand dollars (Echinodermata: Echinoidea)

Andreas Heyland
Summary Evolutionary transitions in larval nutritional mode have occurred on numerous occasions independently in many marine invertebrate phyla. Although the evolutionary transition from feeding to nonfeeding development has received considerable attention through both experimental and theoretical studies, mechanisms underlying the change in life history remain poorly understood. Facultative feeding larvae (larvae that can feed but will complete metamorphosis without food) presumably represent an intermediate developmental mode between obligate feeding and nonfeeding. Here we show that an obligatorily feeding larva can be transformed into a facultative feeding larva when exposed to the thyroid hormone thyroxine. We report that larvae of the subtropical sand dollar Leodia sexiesperforata (Echinodermata: Echinoidea) completed metamorphosis without exogenous food when treated with thyroxine, whereas the starved controls (no thyroxine added) did not. Leodia sexiesperforata juveniles from the thyroxine treatment were viable after metamorphosis but were significantly smaller and contained less energy than sibling juveniles reared with exogenous food. In a second starvation experiment, using an L. sexiesperforata female whose eggs were substantially larger than in the first experiment (2025 vs. 1875 ,m), a small percentage of starved L. sexiesperforata larvae completed metamorphosis in the absence of food. Still, thyroxine-treated larvae in this experiment completed metamorphosis faster and in much higher numbers than in the starved controls. Furthermore, starved larvae of the sand dollar Mellita tenuis, which developed from much smaller eggs (1002 ,m), did not complete metamorphosis either with or without excess thyroxine. Based on these data, and from recent experiments with other echinoids, we hypothesize that thyroxine plays a major role in echinoderm metamorphosis and the evolution of life history transitions in this group. We discuss our results in the context of current life history models for marine invertebrates, emphasizing the role of egg size, juvenile size, and endogenous hormone production for the evolution of nonfeeding larval development. [source]

REVIEW: The evolution of polyembryony in parasitoid wasps

Abstract Polyembryony has evolved independently in four families of parasitoid wasps. We review three main hypotheses for the selective forces favouring this developmental mode in parasitoids: polyembryony (i) reduces the costs of egg limitation; (ii) reduces the genetic conflict among offspring; and (iii) allows offspring to adjust their numbers to the quality of the host. Using comparative data and verbal and mathematical arguments, we evaluate the relative importance of the different selective forces through different evolutionary stages and in the different groups of polyembryonic wasps. We conclude that reducing the cost of egg limitation is especially important when large broods are favoured. Reducing genetic conflict may be most important when broods are small, thus might have been important during, or immediately following, the initial transition from monoembryony to polyembryony. Empirical data provide little support for the brood-size adjustment hypothesis, although it is likely to interact with other selective forces favouring polyembryony. [source]

Evolutionary history of vertebrate appendicular muscle

BIOESSAYS, Issue 5 2001
Frietson Galis
The evolutionary history of muscle development in the paired fins of teleost fish and the limbs of tetrapod vertebrates is still, to a large extent, uncertain. There has been a consensus, however, that in the vertebrate clade the ancestral mechanism of fin and limb muscle development involves the extension of epithelial tissues from the somite into the fin/limb bud. This mechanism has been documented in chondrichthyan, dipnoan, chondrostean and teleost fishes. It has also been assumed that in amniotes, in contrast, individual progenitor cells of muscles migrate from the somites into the limb buds. Neyt et al.(1) now present the exciting finding that in zebrafishes this presumably derived mechanism involving individual cell migration, is present. They conclude, based on data on sharks, zebrafishes, chickens, quails and mice that the derived mechanism was present in the sarcopterygians. This conclusion, however, may be premature in the light of further data available in the literature, which show a highly mosaic distribution of this character in the vertebrate clade. Furthermore, a developmental mode exists that is intermediate between the supposed ancestral and derived modes in teleosts, reptiles and possibly amphibians. BioEssays 23:383,387, 2001. 2001 John Wiley & Sons, Inc. [source]


EVOLUTION, Issue 4 2000
Stefan R. Schulze
Abstract. Invertebrate interspecific developmental patterns can be highly variable and, taxonomically, are considered only weakly constrained. Intraspecifically, some invertebrate species possess multiple developmental modes,a condition known as poecilogony. Closer examination of most putative poecilogenous species, however, has not supported poecilogony, but rather has uncovered hidden or cryptic species. The polychaete Streblospio benedicti is a well-known, poecilogenous species found along the coast of North America. We collected mitochondrial cytochrome subunit I DNA sequence data from 88 individuals taken from 11 locations along the Atlantic, Gulf, and Pacific Coasts of the United States to provide a phylogenetic framework from which to interpret intraspecific variation in larval life history and brooding structure morphology in this species. Our results are consistent with a recent revision of the species into two separate species: S. benedicti, a pouched brooding form distributed along the Atlantic and Pacific Coasts, and S. gynobranchiata, a branchiate brooding form in the Gulf of Mexico. Contrary to the redescription, S. benedicti is paraphyletic because the pouched brooding population in Vero Beach, Florida shows strong genetic affinity with Gulf of Mexico populations (S. gynobranchiata). However, S. benedicti is a true poecilogenous species, with both lecithotrophic and planktotrophic individuals possessing identical mitochondrial DNA haplotypes. Crossbreeding experiments further support the molecular phylogeny with reproductive isolation demonstrated between, but not within, the major phylogenetic clades consistent with the previously described species. The genetic break near Vero Beach, Florida, corresponds to a well-known phylogeographic boundary, but the estimated time of separation for the Streblospio spp., approximately 10 million years before present, predates all other known phylogeographic subdivisions in this area. This suggests that biogeographic sundering in this region is a recurrent event. Divergence times within the major Streblospio spp. clades are recent and indicate that changes in larval life history as well as brooding structure morphology are highly plastic and can evolve rapidly. [source]