Depolarizing Stimuli (depolarizing + stimulus)

Distribution by Scientific Domains


Selected Abstracts


Expression of functional NR1/NR2B-type NMDA receptors in neuronally differentiated SK-N-SH human cell line

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002
Marina Pizzi
Abstract The present study demonstrates that human SK-N-SH neuroblastoma cells, differentiated by retinoic acid (RA), express functional NMDA receptors and become vulnerable to glutamate toxicity. During exposure to RA, SK-N-SH cells switched from non-neuronal to neuronal phenotype by showing antigenic changes typical of postmitotic neurons together with markers specific for cholinergic cells. Neuronally differentiated cells displayed positive immunoreactivity to the vesicular acetylcholine transporter and active acetylcholine release in response to depolarizing stimuli. The differentiation correlated with the expression of NMDA receptors. RT-PCR and immunoblotting analysis identified NMDA receptor subunits NR1 and NR2B, in RA-differentiated cultures. The NR1 protein immunolocalized to the neuronal cell population and assembled with the NR2B subunit to form functional N -methyl- d -aspartate (NMDA) receptors. Glutamate or NMDA application, concentration-dependently increased the intracellular Ca2+ levels and acetylcholine release in differentiated cultures, but not in undifferentiated SK-N-SH cells. Moreover, differentiated cultures became vulnerable to NMDA receptor-mediated excitotoxicity. The glutamate effects were enhanced by glycine application and were prevented by the NMDA receptor blocker MK 801, as well as by the NR2B selective antagonist ifenprodil. These data suggest that SK-N-SH cells differentiated by brief treatment with RA may represent an unlimited source of neuron-like cells suitable for studying molecular events associated with activation of human NR1/NR2B receptors. [source]


Acidosis Impairs the Protective Role of hERG K+ Channels Against Premature Stimulation

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 10 2010
B.Sc., CHUN YUN DU M.B.
Acidosis and the hERG K+ Channel.,Introduction: Potassium channels encoded by human ether-à-go-go-related gene (hERG) underlie the cardiac rapid delayed rectifier K+ channel current (IKr). Acidosis occurs in a number of pathological situations and modulates a range of ionic currents including IKr. The aim of this study was to characterize effects of extracellular acidosis on hERG current (IhERG), with particular reference to quantifying effects on IhERG elicited by physiological waveforms and upon the protective role afforded by hERG against premature depolarizing stimuli. Methods and Results: IhERG recordings were made from hERG-expressing Chinese Hamster Ovary cells using whole-cell patch-clamp at 37°C. IhERG during action potential (AP) waveforms was rapidly suppressed by reducing external pH from 7.4 to 6.3. Peak repolarizing current and steady state IhERG activation were shifted by ,+6 mV; maximal IhERG conductance was reduced. The voltage-dependence of IhERG inactivation was little-altered. Fast and slow time-constants of IhERG deactivation were smaller across a range of voltages at pH 6.3 than at pH 7.4, and the contribution of fast deactivation increased. A modest acceleration of the time-course of recovery of IhERG from inactivation was observed, but time-course of activation was unaffected. The amplitude of outward IhERG transients elicited by premature stimuli following an AP command was significantly decreased at lower pH. Computer simulations showed that after AP repolarization a subthreshold stimulus at pH 7.4 could evoke an AP at pH 6.3. Conclusion: During acidosis the contribution of IhERG to action potential repolarization is reduced and hERG may be less effective in counteracting proarrhythmogenic depolarizing stimuli. (J Cardiovasc Electrophysiol, Vol. 21, pp. 1160-1169) [source]


Threshold behaviour of human axons explored using subthreshold perturbations to membrane potential

THE JOURNAL OF PHYSIOLOGY, Issue 2 2009
David Burke
The present study explores the threshold behaviour of human axons and the mechanisms contributing to this behaviour. The changes in excitability of cutaneous afferents in the median nerve at the wrist were recorded to a long-lasting subthreshold conditioning stimulus, with a waveform designed to maximize the contribution of currents active in the just-subthreshold region. The conditioning stimulus produced a decrease in threshold that developed over 3,5 ms following the end of the depolarization and then decayed slowly, in a pattern similar to the recovery of axonal excitability following a discharge. To ensure that the conditioning stimulus did not activate low-threshold axons, similar recordings were then made from single motor axons in the ulnar nerve at the elbow. The findings were comparable, and behaviour with the same pattern and time course could be reproduced by subthreshold stimuli in a model of the human axon. In motor axons, subthreshold depolarizing stimuli, 1 ms long, produced a similar increase in excitability, but the late hyperpolarizing deflection was less prominent. This behaviour was again reproduced by the model axon and could be explained by the passive properties of the nodal membrane and conventional Na+ and K+ currents. The modelling studies emphasized the importance of leak current through the Barrett,Barrett resistance, even in the subthreshold region, and suggested a significant contribution of K+ currents to the threshold behaviour of axons. While the gating of slow K+ channels is slow, the resultant current may not be slow if there are substantial changes in membrane potential. By extrapolation, we suggest that, when human axons discharge, nodal slow K+ currents will be activated sufficiently early to contribute to the early changes in excitability following the action potential. [source]


Electrophysiological and Neurochemical Evidence for Voltage-Dependent Ca2+ Channel Blockade by a Novel Neuroprotective Agent NS-7,

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 3 2001
Michiko Oka
In rat dorsal root ganglion neurones, NS-7 (0.3,100 ,M) inhibited the whole-cell Ba2+ currents (IBa) in a voltage-dependent manner, in which the compound more potently blocked the IBa elicited from the holding potential of ,40 mV than that induced from ,80 mV. In slices of rat cerebral cortex, KCl-evoked nitric oxide synthesis was markedly inhibited by ,-conotoxin GVIA and ,-agatoxin IVA, but only slightly attenuated by nifedipine, suggesting that the response is mediated predominantly through activation of N-type and P/Q-type Ca2+ channels. NS-7 (1,100 ,M) inhibited the KCl-stimulated nitric oxide synthesis in a manner dependent on the intensity of the depolarizing stimuli. Moreover, weak but significant inhibitory effect of NS-7 was observed even after wash-out. Similar voltage-dependent inhibition of the KCl response was observed by a limited concentration (10 ,M) of verapamil. These findings indicate that NS-7 in several concentrations blocks Ca2+ channel in a voltage-dependent manner. [source]