Home About us Contact | |||
Depolarization
Kinds of Depolarization Terms modified by Depolarization Selected AbstractsDepolarization promotes GAD 65-mediated GABA synthesis by a post-translational mechanism in neural stem cell-derived neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008Nidhi Gakhar-Koppole Abstract Neuronal activity regulates neurogenesis and neuronal differentiation in the mammalian brain. The commencement of neurotransmitter expression establishes the neuronal phenotype and enables the formation of functional connectivity between neurons. In addition, release of neurotransmitters from differentiating neurons may modulate the behaviour of neural precursors. Here, we show that neuronal activity regulates ,-aminobutyric acid (GABA) expression in neurons generated from stem cells of the striatum and adult subventricular zone (SVZ). Differentiating neurons display spontaneous Ca2+ events, which are voltage-gated calcium channel (VGCC) dependent. Depolarization increases both the frequency of Ca2+ transients and the amount of Ca2+ influx in differentiating neurons. We show that depolarization-dependent GABA expression is regulated by the amplitude and not by the frequency of Ca2+ influx. Brief activation of VGCCs leads to Ca2+ influx that in turn promotes a rapid expression of GABA. Depolarization-dependent GABA expression does not require changes in gene expression. Instead, it involves cAMP-dependent protein kinase (PKA) and Ca2+ and phospholipid-dependent protein kinase (PKC) signalling. Activity increases the number of glutamic acid decarboxylase (GAD) 65-immunoreactive neurons in a PKA-dependent manner, without altering the expression of GAD 65, suggesting that depolarization promotes recruitment of GAD 65 by a post-translational mechanism. In line with this, depolarization does not permanently increase the expression of GABA in neurons derived from neural stem cells of the embryonic striatum, cortex and adult SVZ. Thus, neuronal activity does not merely accelerate neuronal differentiation but it may alter the mechanism of GABA synthesis in newly generated neurons. [source] Characterization of depolarization and repolarization phases of mitochondrial membrane potential fluctuations induced by tetramethylrhodamine methyl ester photoactivationFEBS JOURNAL, Issue 7 2005Angela M. Falchi Depolarization and repolarization phases (D and R phases, respectively) of mitochondrial potential fluctuations induced by photoactivation of the fluorescent probe tetramethylrhodamine methyl ester (TMRM) were analyzed separately and investigated using specific inhibitors and substrates. The frequency of R phases was significantly inhibited by oligomycin and aurovertin (mitochondrial ATP synthase inhibitors), rotenone (mitochondrial complex I inhibitor) and iodoacetic acid (inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase). Succinic acid (mitochondrial complex II substrate, given in the permeable form of dimethyl ester) abolished the rotenone-induced inhibition of R phases. Taken together, these findings indicate that the activity of both respiratory chain and ATP synthase were required for the recovery of the mitochondrial potential. The frequency of D phases prevailed over that of R phases in all experimental conditions, resulting in a progressive depolarization of mitochondria accompanied by NAD(P)H oxidation and Ca2+ influx. D phases were not blocked by cyclosporin A (inhibitor of the permeability transition pore) or o -phenyl-EGTA (a Ca2+ chelator), suggesting that the permeability transition pore was not involved in mitochondrial potential fluctuations. [source] Tetanic stimulation of Schaffer collaterals induces rhythmic bursts via NMDA receptor activation in rat CA1 pyramidal neuronsHIPPOCAMPUS, Issue 4 2002Christian Bonansco Abstract Exploring the principles that regulate rhythmic membrane potential (Vm) oscillations and bursts in hippocampal CA1 pyramidal neurons is essential to understanding the , rhythm (,). Recordings were performed in vitro in hippocampal slices from young rats, and a group of the recorded CA1 pyramidal cells were dye-filled with carboxifluorescein and immunolabeled for the R1 subunit of the NMDA receptor. Tetanic stimulation of Schaffer collaterals (SCs) and iontophoresis of glutamate evoked rhythmic Vm oscillations and bursts (,10 mV, ,7 Hz, 2,5 spikes per burst) in cells (31%) placed close to the midline ("medial cells"). Rhythmic bursts remained under picrotoxin (10 ,M) and Vm oscillations persisted with tetrodotoxin (1.5 ,M), but bursts were blocked by AP5 (25 ,M) and Mg2+ -free solutions. Depolarization and AMPA never induced rhythmic bursts. The rest of the neurons (69%), recorded closer to the CA3 region ("lateral cells"), discharged rhythmically single repetitive spikes under SC stimulation and glutamate in control conditions, but fired rhythmic bursts under similar stimulation, both when NMDA was applied and when non-NMDA receptors were blocked with CNQX (20 ,M). Medial cells exhibited a larger NMDA current component and a higher NMDAR1 density at the apical dendritic shafts than lateral cells, suggesting that these differences underlie the dissimilar responses of both cell groups. We conclude that the ",-like" rhythmic oscillations and bursts induced by glutamate and SC stimulation relied on the activation of NMDA receptors at the apical dendrites of medial cells. These results suggest a role of CA3 pyramidal neurons in the generation of CA1 , via the activation of NMDA receptors of CA1 pyramidal neurons. Hippocampus 2002;12:434,446. © 2002 Wiley-Liss, Inc. [source] Timing of Depolarization and Contraction in the Paced Canine Left Ventricle:JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 2003Experiment, Model Introduction: For efficient pump function, contraction of the heart should be as synchronous as possible. Ventricular pacing induces asynchrony of depolarization and contraction. The degree of asynchrony depends on the position of the pacing electrode. The aim of this study was to extend an existing numerical model of electromechanics in the left ventricle (LV) to the application of ventricular pacing. With the model, the relation between pacing site and patterns of depolarization and contraction was investigated. Methods and Results: The LV was approximated by a thick-walled ellipsoid with a realistic myofiber orientation. Propagation of the depolarization wave was described by the eikonal-diffusion equation, in which five parameters play a role: myocardial and subendocardial velocity of wave propagation along the myofiber cm and ce; myocardial and subendocardial anisotropy am and ae; and parameter k, describing the influence of wave curvature on wave velocity. Parameters cm, ae, and k were taken from literature. Parameters am and ce were estimated by fitting the model to experimental data, obtained by pacing the canine left ventricular free wall (LVFW). The best fit was found with cm= 0.75 m/s, ce= 1.3 m/s, am= 2.5, ae= 1.5, and k= 2.1 × 10,4 m2/s. With these parameter settings, for right ventricular apex (RVA) pacing, the depolarization times were realistically simulated as also shown by the wavefronts and the time needed to activate the LVFW. The moment of depolarization was used to initiate myofiber contraction in a model of LV mechanics. For both pacing situations, mid-wall circumferential strains and onset of myofiber shortening were obtained. Conclusion: With a relatively simple model setup, simulated depolarization timing patterns agreed with measurements for pacing at the LVFW and RVA in an LV. Myocardial cross-fiber wave velocity is estimated to be 0.40 times the velocity along the myofiber direction (0.75 m/s). Subendocardial wave velocity is about 1.7 times faster than in the rest of the myocardium, but about 3 times slower than as found in Purkinje fibers. Furthermore, model and experiment agreed in the following respects. (1) Ventricular pacing decreased both systolic pressure and ejection fraction relative to natural sinus rhythm. (2) In early depolarized regions, early shortening was observed in the isovolumic contraction phase; in late depolarized regions, myofibers were stretched in this phase. Maps showing timing of onset of shortening were similar to previously measured maps in which wave velocity of contraction appeared similar to that of depolarization. (J Cardiovasc Electrophysiol, Vol. 14, pp. S188-S195, October 2003, Suppl.) [source] Mechanisms of glutamate release elicited in rat cerebrocortical nerve endings by ,pathologically' elevated extraterminal K+ concentrationsJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Luca Raiteri Abstract Extracellular [K+] can increase during some pathological conditions, resulting into excessive glutamate release through multiple mechanisms. We here investigate the overflow of [3H]d -aspartate ([3H] d -ASP) and of endogenous glutamate elicited by increasing [K+] from purified rat cerebrocortical synaptosomes. Depolarization with [K+] , 15 mmol/L provoked [3H] d -ASP and glutamate overflows almost totally dependent on external Ca2+. Consistent with release by exocytosis, the overflow of [3H] d -ASP evoked by 12 mmol/L K+ was sensitive to clostridial toxins. The overflows evoked by 35/50 mmol/L K+ remained external Ca2+ -dependent by more than 50%. The Ca2+ -independent components of the [3H] d -ASP overflows evoked by [K+] > 15 mmol/L were prevented by the glutamate transporter inhibitors dl - threo -beta-benzyloxyaspartate (dl -TBOA) and dihydrokainate. Differently, the overflows of endogenous glutamate provoked by [K+] > 15 mmol/L were insensitive to both inhibitors; the external Ca2+ -independent glutamate overflow caused by 50 mmol/L KCl was prevented by bafilomycin, by chelating intraterminal Ca2+, by blocking the mitochondrial Na+/Ca2+ exchanger and, for a small portion, by blocking anion channels. In contrast to purified synaptosomes, the 50 mmol/L K+ -evoked release of endogenous glutamate or [3H]D-ASP was inhibited by dl -TBOA in crude synaptosomes; moreover, it was external Ca2+ -insensitive and blocked by dl -TBOA in purified gliosomes, suggesting that carrier-mediated release of endogenous glutamate provoked by excessive [K+] in CNS tissues largely originates from glia. [source] The Salt-Inducible Kinase, SIK, Is Induced by Depolarization in BrainJOURNAL OF NEUROCHEMISTRY, Issue 6 2000Jonathan D. Feldman Abstract: Membrane depolarization of neurons is thought to lead to changes in gene expression that modulate neuronal plasticity. We used representational difference analysis to identify a group of cDNAs that are induced by membrane depolarization or by forskolin, but not by neurotrophins or growth factors, in PC12 pheochromocytoma cells. One of these genes, SIK (salt- inducible kinase), is a member of the sucrose-nonfermenting 1 protein kinase/AMP-activated protein kinase protein kinase family that was also recently identified from the adrenal gland of rats treated with high-salt diets. SIK mRNA is induced up to eightfold in specific regions of the hippocampus and cortex in rats, following systemic kainic acid administration and seizure induction. [source] The MAPK pathway is required for depolarization-induced "promiscuous" immediate-early gene expression but not for depolarization-restricted immediate-early gene expression in neuronsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2008Hidevaldo B. Machado Abstract Depolarization, growth factors, neurotrophins, and other stimuli induce expression of immediate early genes (IEGs) in neurons. We identified a subset of IEGs, IPD-IEGs, which are induced preferentially by depolarization, but not by neurotrophins or growth factors, in PC12 cells. The "promiscuous" IEGs Egr1 and c-fos, induced by growth factors and neurotrophins, in addition to depolarization, require activation of the MAP kinase signaling pathway for induction in response to KCl depolarization in PC12 cells; MEK1/2 inhibitors block KCl-induced Egr1 and c-fos expression. In contrast, MEK1/2 inhibition has no effect on KCl-induced expression of the known IPD-IEGs in PC12 cells. Additional "candidate" IDP-IEGs were identified by a microarray comparison of genes induced by KCl in the presence vs. the absence of an MEK1/2 inhibitor in PC12 cells. Northern blot analyses demonstrated that representative newly identified candidate IPD-IEGs, as with the known IPD-IEGs, are also induced by a MAP kinase- independent pathway in response to depolarization, both in PC12 cells and in rat primary cortical neurons. Nerve growth factor and epidermal growth factor are unable to induce the expression of the Crem/Icer, Nur77, Nor1, Rgs2, Dusp1 (Mkp1), and Dscr1 genes in PC12 cells, validating their identification as IPD-IEGs. Inhibiting calcium/calmodulin-dependent kinase II (CaMKII), calcineurin, or protein kinase A (PKA) activity prevents KCl-induced IPD-IEG mRNA accumulation, suggesting that the IPD-IEG genes are induced by depolarization in neurons via a combination of calcineurin/PKA- and CaMKII-dependent pathways. © 2007 Wiley-Liss, Inc. [source] High Density Endocardial Mapping of Shifts in the Site of Earliest Depolarization During Sinus Rhythm and Sinus TachycardiaPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 4p1 2003TIM R. BETTS BETTS, T.R., et al.: High Density Endocardial Mapping of Shifts in the Site of Earliest Depolarization During Sinus Rhythm and Sinus Tachycardia.Previous mapping studies of sinus rhythm suggest faster rates arise from more cranial sites within the lateral right atrium. In the intact, beating heart, mapping has been limited to epicardial plaques or single endocardial catheters. The present study was designed to examine shifts in the site of the earliest endocardial depolarization during sinus rhythm and sinus tachycardia using high density activation mapping. Noncontact mapping of the right atrium during sinus rhythm was performed on ten anesthetized swine. Recordings were made during sinus rhythm, phenylephrine infusion, and isoproterenol infusion. The hearts were then excised and the histological sinus node identified. The mean minimum and maximum cycle lengths recorded were355 ± 43and717 ± 108 ms. A median of three (range two to five) sites of earliest endocardial depolarization were documented in each animal. With increasing heart rate the site of earliest endocardial depolarization remained stationary until a sudden shift in a cranial or caudal direction, often to sites beyond the histological sinoatrial node. The endocardial shift was unpredictable with considerable variation between animals; however, faster rates arose from more cranial sites(r = 0.46, P = 0.023). There was no difference in the mean cycle length of sinus rhythm originating from specific positions on the terminal crest(r = 0.44, P = 0.17). Cranial sites displayed a more diffuse pattern of early depolarization than caudal sites. In the porcine heart the relationship between heart rate and site of earliest endocardial depolarization shows considerable variation between individual animals. These findings may have implications for clinical mapping and ablation procedures. (PACE 2003; 26[Pt. I]:874,882) [source] Inhibition of Biventricular Pacemakers by Oversensing of Far-Field Atrial DepolarizationPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 3 2002IGOR LIPCHENCA LIPCHENCA, I., et al.: Inhibition of Biventricular Pacemakers by Oversensing of Far-Field Atrial Depo-larization. This report describes two patients who exhibited far-field oversensing of the P wave by the ventricular channel of a DDD biventricular pacemaker implanted for the treatment of congestive heart failure. Oversensing probably occurred secondary to slight displacement of the left ventricular lead in the coronary venous system. Long-term reliable pacing was restored by decreasing the sensitivity of the ventricular channel. [source] Dynamics and Rate-Dependence of the Spatial Angle between Ventricular Depolarization and Repolarization Wave Fronts during Exercise ECGANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 3 2010Tuomas Kenttä M.Sc. Background: QRS/T angle and the cosine of the angle between QRS and T-wave vectors (TCRT), measured from standard 12-lead electrocardiogram (ECG), have been used in risk stratification of patients. This study assessed the possible rate dependence of these variables during exercise ECG in healthy subjects. Methods: Forty healthy volunteers, 20 men and 20 women, aged 34.6 ± 3.4, underwent an exercise ECG testing. Twelve-lead ECG was recorded from each test subject and the spatial QRS/T angle and TCRT were automatically analyzed in a beat-to-beat manner with custom-made software. The individual TCRT/RR and QRST/RR patterns were fitted with seven different regression models, including a linear model and six nonlinear models. Results: TCRT and QRS/T angle showed a significant rate dependence, with decreased values at higher heart rates (HR). In individual subjects, the second-degree polynomic model was the best regression model for TCRT/RR and QRST/RR slopes. It provided the best fit for both exercise and recovery. The overall TCRT/RR and QRST/RR slopes were similar between men and women during exercise and recovery. However, women had predominantly higher TCRT and QRS/T values. With respect to time, the dynamics of TCRT differed significantly between men and women; with a steeper exercise slope in women (women, ,0.04/min vs ,0.02/min in men, P < 0.0001). In addition, evident hysteresis was observed in the TCRT/RR slopes; with higher TCRT values during exercise. Conclusions: The individual patterns of TCRT and QRS/T angle are affected by HR and gender. Delayed rate adaptation creates hysteresis in the TCRT/RR slopes. Ann Noninvasive Electrocardiol 2010;15(3):264,275 [source] Monitoring in Real Time with a Microelectrode the Release of Reactive Oxygen and Nitrogen Species by a Single Macrophage Stimulated by its Membrane Mechanical DepolarizationCHEMBIOCHEM, Issue 4 2006Christian Amatore Prof. Abstract Macrophages are key cells of the immune system. During phagocytosis, the macrophage engulfs a foreign bacterium, virus, or particle into a vacuole, the phagosome, wherein oxidants are produced to neutralize and decompose the threatening element. These oxidants derive from in situ production of superoxide and nitric oxide by specific enzymes. However, the chemical nature and sequence of release of these compounds is far from being completely determined. The aim of the present work was to study the fundamental mechanism of oxidant release by macrophages at the level of a single cell, in real time and quantitatively. The tip of a microelectrode was positioned at a micrometric distance from a macrophage in a culture to measure oxidative-burst release by the cell when it was submitted to physical stimulation. The ensuing release of electroactive reactive oxygen and nitrogen species was detected by amperometry and the exact nature of the compounds was characterized through comparison with in vitro electrochemical oxidation of H2O2, ONOO,, NO., and NO2, solutions. These results enabled the calculation of time variations of emission flux for each species and the reconstruction of the original flux of production of primary species, O2., and NO., by the macrophage. [source] Elementary Many-Particle Processes in Plasma MicrofieldsCONTRIBUTIONS TO PLASMA PHYSICS, Issue 3 2006M. Yu. Abstract The effect of electric and magnetic plasma microfields on elementary many-body processes in plasmas is considered. As detected first by Inglis and Teller in 1939, the electric microfield controls several elementary processes in plasmas as transitions, line shifts and line broadening. We concentrate here on the many-particle processes ionization, recombination, and fusion and study a wide area of plasma parameters. In the first part the state of art of investigations on microfield distributions is reviewed in brief. In the second part, various types of ionization processes are discussed with respect to the influence of electric microfields. It is demonstrated that the processes of tunnel and rescattering ionization by laser fields as well as the process of electron collisional ionization may be strongly influenced by the electric microfields in the plasma. The third part is devoted to processes of microfield action on fusion processes and the effects on three-body recombination are investigated. It is shown that there are regions of plasma densities and temperatures, where the rate of nuclear fusion is accelerated by the electric microfields. This effect may be relevant for nuclear processes in stars. Further, fusion processes in ion clusters are studied. Finally we study in this section three-body recombination effects and show that an electric microfield influences the three-body electron-ion recombination via the highly excited states. In the fourth part, the distribution of the magnetic microfield is investigated for equilibrium, nonequilibrium, and non-uniform magnetized plasmas. We show that the field distribution in a neutral point of a non-relativistic ideal equilibrium plasma is similar to the Holtsmark distribution for the electrical microfield. Relaxation processes in nonequilibrium plasmas may lead to additional microfields. We show that in turbulent plasmas the broadening of radiative electron transitions in atoms and ions, without change of the principle quantum number, may be due to the Zeeman effect and may exceed Doppler and Stark broadening as well. Further it is shown that for optical radiation the effect of depolarization of a linearly polarized laser beams propagating through a magnetized plasma may be rather strong. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Normal dendrite growth in Drosophila motor neurons requires the AP-1 transcription factorDEVELOPMENTAL NEUROBIOLOGY, Issue 10 2008Cortnie L. Hartwig Abstract During learning and memory formation, information flow through networks is regulated significantly through structural alterations in neurons. Dendrites, sites of signal integration, are key targets of activity-mediated modifications. Although local mechanisms of dendritic growth ensure synapse-specific changes, global mechanisms linking neural activity to nuclear gene expression may have profound influences on neural function. Fos, being an immediate-early gene, is ideally suited to be an initial transducer of neural activity, but a precise role for the AP-1 transcription factor in dendrite growth remains to be elucidated. Here we measure changes in the dendritic fields of identified Drosophila motor neurons in vivo and in primary culture to investigate the role of the immediate-early transcription factor AP-1 in regulating endogenous and activity-induced dendrite growth. Our data indicate that (a) increased neural excitability or depolarization stimulates dendrite growth, (b) AP-1 (a Fos, Jun hetero-dimer) is required for normal motor neuron dendritic growth during development and in response to activity induction, and (c) neuronal Fos protein levels are rapidly but transiently induced in motor neurons following neural activity. Taken together, these results show that AP-1 mediated transcription is important for dendrite growth, and that neural activity influences global dendritic growth through a gene-expression dependent mechanism gated by AP-1. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source] Oxidative stress, nitric oxide, and the mechanisms of cell death in Lurcher Purkinje cellsDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2007Rebecca McFarland Abstract Oxidative stress is postulated to play a role in cell death in many neurodegenerative diseases. As a model of neonatal neuronal cell death, we have examined the role of oxidative stress in Purkinje cell death in the heterozygous Lurcher mutant (+/Lc). Lurcher is a gain of function mutation in the ,2 glutamate receptor (GluR,2) that turns the receptor into a leaky membrane channel, resulting in chronic depolarization of +/Lc Purkinje cells starting around the first week of postnatal development. Virtually, all +/Lc Purkinje cells die by the end of the first postnatal month. To investigate the role of oxidative stress in +/Lc Purkinje cell death, we have examined nitric oxide synthase (NOS) activity and the expression of two markers for oxidative stress, nitrotyrosine and manganese super oxide dismutase (MnSOD), in wild type and +/Lc Purkinje cells at P10, P15, and P25. The results show that NOS activity and immunolabeling for nitrotyrosine and MnSOD are increased in +/Lc Purkinje cells. To determine whether peroxynitrite formation is a prerequisite for +/Lc Purkinje cell death, +/Lc mutants were crossed with an ,-nNOS knockout mutant (nNOS,,/,) to reduce the production of NO. Analysis of the double mutants showed that blocking ,-nNOS expression does not rescue +/Lc Purkinje cells. However, we present evidence for sustained NOS activity and nitrotyrosine formation in the GluR,2+/Lc:nNOS,/, double mutant Purkinje cells, which suggests that the failure to rescue GluR,2+/Lc:nNOS,/, Purkinje cells may be explained by the induction of alternative nNOS isoforms. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007. [source] Activation of a calcium entry pathway by sodium pyrithione in the bag cell neurons of AplysiaDEVELOPMENTAL NEUROBIOLOGY, Issue 4 2004Ronald J. Knox Abstract The ability of sodium pyrithione (NaP), an agent that produces delayed neuropathy in some species, to alter neuronal physiology was accessed using ratiometric imaging of cytosolic free Ca2+ concentration ([Ca2+]i) in fura PE-filled cultured Aplysia bag cell neurons. Bath-application of NaP evoked a [Ca2+]i elevation in both somata and neurites with an EC50 of ,300 nM and a Hill coefficient of ,1. The response required the presence of external Ca2+, had an onset of 3,5 min, and generally reached a maximum within 30 min. 2-Methyl-sulfonylpyridine, a metabolite and close structural analog of NaP, did not elevate [Ca2+]i. Under whole-cell current-clamp recording, NaP produced a ,14 mV depolarization of resting membrane potential that was dependent on external Ca2+. These data suggested that NaP stimulates Ca2+ entry across the plasma membrane. To minimize the possibility that a change in cytosolic pH was the basis for NaP-induced Ca2+ entry, bag cell neuron intracellular pH was estimated with the dye 2,,7,-bis(carboxyethyl-5(6)-carboxy-fluorescein acetoxy methylester. Exposure of the neurons to NaP did not alter intracellular pH. The slow onset and sustained nature of the NaP response suggested that a cation exchange mechanism coupled either directly or indirectly to Ca2+ entry could underlie the phenomenon. However, neither ouabain, a Na+/K+ ATPase inhibitor, nor removal of extracellular Na+, which eliminates Na+/Ca2+ exchanger activity, altered the NaP-induced [Ca2+]i elevation. Finally, the possibility that NaP gates a Ca2+ -permeable ion channel in the plasma membrane was examined. NaP did not appear to activate two major forms of bag cell neuron Ca2+ -permeable ion channels, as Ca2+ entry was unaffected by inhibition of voltage-gated Ca2+ channels using nifedipine or by inhibition of a voltage-dependent, nonselective cation channel using a high concentration of tetrodotoxin. In contrast, two potential store-operated Ca2+ entry current inhibitors, SKF-96365 and Ni2+, attenuated NaP-induced Ca2+ entry. We conclude that NaP activates a slow, persistent Ca2+ influx in Aplysia bag cell neurons. © 2004 Wiley Periodicals, Inc. J Neurobiol 411,423, 2004 [source] Control of flexor motoneuron activity during single leg walking of the stick insect on an electronically controlled treadwheelDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2003Jens Peter Gabriel Abstract In the present study, motoneurons innervating the flexor tibiae muscle of the stick insect (Cuniculina impigra) middle leg were recorded intracellularly while the single leg performed walking-like movements on a treadwheel. Different levels of belt friction (equivalent to a change in load) were used to study the control of activity of flexor motoneurons. During slow leg movements no fast motoneurons were active, but a recruitment of these neurons could be observed during faster leg movements. The firing rate of slow and fast motoneurons increased with incremented belt friction. Also, the force applied to the treadwheel at different frictional levels was adapted closely to the friction of the treadwheel to be overcome. The motoneurons innervating the flexor tibiae were recruited progressively during the stance phase, with the slow motoneurons being active earlier than the fast (half-maximal spike frequency after 10,15% and 50,60% of the stance phase, respectively). The resting membrane potential was more hyperpolarized in fast motoneurons (64.6 ± 6.5 mV) than in slow motoneurons (,52.9 ± 5.4 mV). However, the threshold for the initiation of action potentials was not statistically significantly different in both types of flexor motoneurons. Therefore, action potentials were generated in fast motoneurons after a longer period of depolarization and thus later during the stance phase than in slow motoneurons. We show that motoneurons of the flexor tibiae receive substantial common excitatory inputs during the stance phase and that the difference in resting membrane potential between slow and fast motoneurons is likely to play a crucial role in their consecutive recruitment. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 237,251, 2003 [source] Synaptic vesicle proteins under conditions of rest and activation: Analysis by 2-D difference gel electrophoresisELECTROPHORESIS, Issue 17 2006Jacqueline Burré Abstract Synaptic vesicles are organelles of the nerve terminal that secrete neurotransmitters by fusion with the presynaptic plasma membrane. Vesicle fusion is tightly controlled by depolarization of the plasma membrane and a set of proteins that may undergo post-translational modifications such as phosphorylation. In order to identify proteins that undergo modifications as a result of synaptic activation, we induced massive exocytosis and analysed the synaptic vesicle compartment by benzyldimethyl- n -hexadecylammonium chloride (BAC)/SDS-PAGE and difference gel electrophoresis (DIGE) followed by MALDI-TOF-MS. We identified eight proteins that revealed significant changes in abundance following nerve terminal depolarization. Of these, six were increased and two were decreased in abundance. Three of these proteins were phosphorylated as detected by Western blot analysis. In addition, we identified an unknown synaptic vesicle protein whose abundance increased on synaptic activation. Our results demonstrate that depolarization of the presynaptic compartment induces changes in the abundance of synaptic vesicle proteins and post-translational protein modification. [source] Response of the charophyte Nitellopsis obtusa to heavy metals at the cellular, cell membrane, and enzyme levelsENVIRONMENTAL TOXICOLOGY, Issue 3 2002Levonas Manusad, ianas Abstract The responses of the freshwater macroalga Nitellopsis obtusa to heavy metal (HM) salts of Hg, Cd, Co, Cu, Cr, and Ni were assessed at different levels: whole-cell mortality (96-h LC50), in vivo cell membrane (45-min depolarization of resting potential, EC50), and enzyme in plasma membrane preparations (K+, Mg2+ -specific H+ -ATPase inhibition, IC50). To measure ATPase activity, a novel procedure for isolation of plasma membrane,enriched vesicles from charophyte cells was developed. The short-term ATPase inhibition assay (IC50 from 6.0 × 10,7 to 4.6 × 10,4 M) was slightly more sensitive than the cell mortality test (LC50 from 1.1 × 10,6 to 2.6 × 10,3 M), and the electrophysiological test with the end point of 45-min depolarization of resting potential was characterized by less sensitivity for HMs (EC50 from 1.1 × 10,4 to 2.2 × 10,2 M). The variability of IC50 values assessed for HMs in the ATPase assays was close to that of LC50 values in the mortality tests (CVs from 33.5 to 83.5 and from 12.4% to 57.7%, respectively), whereas the EC50 values in the electrophysiological tests were characterized by CVs generally below 30%. All three end points identified two separate HM groups according to their toxicity to N. obtusa: Co, Ni, and Cr comprised a group of less toxic metals, whereas Hg, Cu, and Cd comprised a group of more toxic metals. However, the adverse effects within each group were discriminated differently. For example, the maximum difference between the highest and lowest LC50 for the group of less toxic metals in the long-term mortality test was approximately 60% of the response range, whereas the corresponding difference in IC50 values in the ATPase assay was 30%. In contrast, the LC50 values of the more toxic metals occupied only 10% of the response range, whereas the IC50 values were spread over 70%. Further investigation should be done of the underlying mechanism or mechanisms responsible for the observed differences in the dynamic range of a particular end point of the groups of toxicants of varying strength. © 2002 Wiley Periodicals, Inc. Environ Toxicol 17: 275,283, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/tox.10058 [source] Spatial QRS-T angle: association with diabetes and left ventricular performanceEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 9 2006Ch. Voulgari Abstract Background, The spatial QRS-T angle obtained by vectorcardiography is a combined measurement of the electrical activity of the heart and predicts cardiovascular morbidity and mortality. Disturbances in repolarization and depolarization are common in diabetes. No data, however, exist on the effect of diabetes on QRS-T angle. In this study we examined differences in QRS-T angle between type 2 diabetic and non-diabetic subjects; in addition, the potential relationship between QRS-T angle and left ventricular performance as well as glycaemic control were also examined. Patients and methods, A total of 74 subjects with type 2 diabetes and 74 non-diabetic individuals, matched for age and sex with the diabetic subjects were examined. All subjects were free of clinically apparent macrovascular complications. Spatial vectorcardiogaphic descriptors of ventricular depolarization and repolarization were reconstructed from the 12-electrocardiographic leads using a computer-based electrocardiogram. Left ventricular mass and performance were measured using M-mode and Doppler echocardiography. Results, QRS-T angle values were higher (by almost 2-fold) in the diabetic in comparison with the non-diabetic subjects (P < 0·001). After multivariate adjustment, QRS-T angle was independently associated with age (P = 0·01), HbA1c (P = 0·003), and low-density lipoprotein cholesterol levels (P = 0·04) in the non-diabetic, and with HbA1c (P = 0·03) as well as Tei index (P = 0·003) in the diabetic subjects. Conclusions, The spatial QRS-T angle is high in subjects with type 2 diabetes and is associated with glycaemic control and left ventricular performance. The prognostic importance of the higher spQRS-T angle values in subjects with diabetes remains to be evaluated in prospective studies. [source] Apoptosis via the B cell antigen receptor requires Bax translocation and involves mitochondrial depolarization, cytochrome C release, and caspase-9 activationEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2004Eric Eldering Abstract Various routes to apoptosis can be active during B cell development. In a model system of mature B cells, differences in caspase-3 processing have suggested that antigen receptor (BCR)-mediated apoptosis may involve a zVAD-insensitive initiator protease(s). In search of the events leading to caspase-3 activation, we now establish that both CD95- and BCR-mediated apoptosis depend on Bax activation and cytochrome C (cytC) release. Nevertheless, the timing and caspase-dependence of mitochondrial membrane depolarization differed considerably after CD95- or BCR-triggering. To delineate events subsequent to cytC release, we compared apoptosis induced via BCR triggering and via direct mitochondrial depolarization by CCCP. In both cases, partial processing of caspase-3 was observed in the presence of zVAD. By expression in 293 cells we addressed the potential of candidate initiator caspases to function in the presence of zVAD, and found that caspase-9 efficiently processed caspase-3, while caspase-2 or ,8 were inactive. Finally, retroviral expression of dominant-negative caspase-9 inhibited both CD95- and BCR-mediated apoptosis. In conclusion, we obtained no evidence for involvement of a BCR-specific protease. Instead, our data show for the first time that the BCR-signal causes Bax translocation, followed by mitochondrial depolarization, and cytC release. Subsequent caspase-9 activation can solely account for events further downstream. [source] Analysis of mitochondria by capillary electrophoresis: cardiolipin levels decrease in response to carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazoneEUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 9 2010Wenfeng Zhao Abstract Cardiolipin is an important phospholipid present in the inner membrane of mitochondria. It plays a critical role in adenosine triphosphate (ATP) synthesis mediated by oxidative phosphorylation. Exposure of HepG2 cells to carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) caused the inhibition of ATP synthesis and the depolarization of mitochondria. Capillary electrophoresis with laser-induced fluorescence (CE-LIF) analysis of fluorescent mitochondrion-selective probe 10-N-nonyl acridine orange (NAO) labeled mitochondria was employed to in situ estimate the cardiolipin levels under FCCP-induced de-energization of mitochondria. NAO, stoichiometriclly bound to cardiolipin at a 1:1 or 2:1 molar ratio (NAO/cardiolipin), emitted green and red fluorescence, respectively. Green fluorescence was chosen for cardiolipin content analysis because it was more intense than red fluorescence. A significant decrease in the cardiolipin content, up to 11% of the control, was evident when the ATP content and mitochondrial membrane potential (MMP) correspondingly decreased. These related findings suggested that CE-LIF may provide a sensitive strategy to determine cardiolipin content in response to exposure to chemical uncouplers. This reinforces the hypothesis that alterations in ATP synthesis and MMP have a close association with cardiolipin content, which correlated tightly with mitochondrial membrane assembly and activity. [source] Acute action of rotenone on nigral dopaminergic neurons , involvement of reactive oxygen species and disruption of Ca2+ homeostasisEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2009Peter S. Freestone Abstract Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05,1 ,m) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 ± 15 pA) associated with increases in intracellular [Ca2+] ([Ca2+]i) (73.8 ± 7.7 nm) and intracellular [Na+] (3.1 ± 0.6 mm) (all with 1 ,m). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca2+]i rise was abolished by removing extracellular Ca2+, and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N -(p -amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca2+]i rise resulted in a large (46.6 ± 25.3 nm) Ca2+ response when baseline [Ca2+]i was increased by a ,priming' protocol that activated voltage-gated Ca2+ channels. There was also a positive correlation between ,naturally' occurring variations in baseline [Ca2+]i and the rotenone-induced [Ca2+]i rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K+ channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca2+]i rise by a small increase in baseline [Ca2+]i. [source] N -methyl- d -aspartate receptor- and metabotropic glutamate receptor-dependent long-term depression are differentially regulated by the ubiquitin-proteasome systemEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009Ami Citri Abstract Long-term depression (LTD) in CA1 pyramidal neurons can be induced by activation of either N -methyl- d -aspartate receptors (NMDARs) or metabotropic glutamate receptors (mGluRs), both of which elicit changes in synaptic efficacy through ,-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) endocytosis. To address the role of the ubiquitin-proteasome system in regulating AMPAR endocytosis during these forms of LTD, we examined the effects of pharmacological inhibitors of proteasomal degradation and protein ubiquitination on endocytosis of glutamate receptor 1 (GluR1) -containing AMPARs in dissociated rat hippocampal cultures as well as LTD of excitatory synaptic responses in acute rat hippocampal slices. Our findings suggest that the contribution of the ubiquitin-proteasome system to NMDAR-induced vs. mGluR-induced AMPAR endocytosis and the consequent LTD differs significantly. NMDAR-induced AMPAR endocytosis and LTD occur independently of proteasome function but appear to depend, at least in part, on ubiquitination. In contrast, mGluR-induced AMPAR endocytosis and LTD are enhanced by inhibition of proteasomal degradation, as well as by the inhibitor of protein ubiquitination. Furthermore, the decay of mGluR-induced membrane depolarization and Erk activation is delayed following inhibition of either ubiquitination or proteasomal degradation. These results suggest that, although NMDAR-dependent LTD may utilize ubiquitin as a signal for AMPAR endocytosis, mGluR-induced signaling and LTD are limited by a feedback mechanism that involves the ubiquitin-proteasome system. [source] Metabotropic glutamate receptor 1 activity generates persistent, N -methyl- d -aspartate receptor-dependent depression of hippocampal pyramidal cell excitabilityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2009J. P. Clement Abstract Metabotropic glutamate receptors (mGluRs) are involved in many forms of neuronal plasticity. In the hippocampus, they have well-defined roles in long-lasting forms of both synaptic and intrinsic plasticity. Here, we describe a novel form of long-lasting intrinsic plasticity that we call (S)-3,5-dihydroxyphenylglycine (DHPG)-mediated long-term depression of excitability (DHPG-LDE), and which is generated following transient pharmacological activation of group I mGluRs. In extracellular recordings from hippocampal slices, DHPG-LDE was expressed as a long-lasting depression of antidromic compound action potentials (cAPs) in CA1 or CA3 cells following a 4-min exposure to the group I mGluR agonist (S)-DHPG. A similar phenomenon was also seen for orthodromic fibre volleys evoked in CA3 axons. In single-cell recordings from CA1 pyramids, DHPG-LDE was manifest as persistent failures in antidromic action potential generation. DHPG-LDE was blocked by (S)-(+)- a -amino-4-carboxy-2-methylbenzeneacetic acid (LY367385), an antagonist of mGluR1, but not 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), an mGluR5 inhibitor. Although insensitive to antagonists of ,-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate/kainate and ,-aminobutyric acidA receptors, DHPG-LDE was blocked by antagonists of N -methyl- d -aspartate (NMDA) receptors. Similarly, in single-cell recordings, DHPG-mediated antidromic spike failures were eliminated by NMDA receptor antagonism. Long after (S)-DHPG washout, DHPG-LDE was reversed by mGluR1 antagonism. A 4-min application of (S)-DHPG also produced an NMDA receptor-dependent persistent depolarization of CA1 pyramidal cells. This depolarization was not solely responsible for DHPG-LDE, because a similar level of depolarization elicited by raising extracellular K+ increased the amplitude of the cAP. DHPG-LDE did not involve HCN channels or protein synthesis, but was eliminated by blockers of protein kinase C or tyrosine phosphatases. [source] AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008Ryland W. Pace Abstract Excitatory transmission mediated by AMPA receptors is critical for respiratory rhythm generation. However, the role of AMPA receptors has not been fully explored. Here we tested the functional role of AMPA receptors in inspiratory neurons of the neonatal mouse preBötzinger complex (preBötC) using an in vitro slice model that retains active respiratory function. Immediately before and during inspiration, preBötC neurons displayed envelopes of depolarization, dubbed inspiratory drive potentials, that required AMPA receptors but largely depended on the Ca2+ -activated non-specific cation current (ICAN). We showed that AMPA receptor-mediated depolarization opened voltage-gated Ca2+ channels to directly evoke ICAN. Inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca2+ release also evoked ICAN. Inositol 1,4,5-trisphosphate receptors acted downstream of group I metabotropic glutamate receptor activity but, here too, AMPA receptor-mediated Ca2+ influx was essential to trigger the metabotropic glutamate receptor contribution to inspiratory drive potential generation. This study helps to elucidate the role of excitatory transmission in respiratory rhythm generation in vitro. AMPA receptors in preBötC neurons initiate convergent signaling pathways that evoke post-synaptic ICAN, which underlies inspiratory drive potentials. The coupling of AMPA receptors with ICAN suggests that latent burst-generating intrinsic conductances are recruited by excitatory synaptic interactions among preBötC neurons in the context of respiratory network activity in vitro, exemplifying a rhythmogenic mechanism based on emergent properties of the network. [source] Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial,neuronal culturesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2008Takayuki Nakagawa Abstract Glutamate uptake by the Na+ -dependent glutamate transporter GLT-1, which is predominantly expressed in astrocytes, is crucial for regulating glutamate concentration at the synaptic cleft and achieving proper excitatory neurotransmission. A body of evidence suggests that GLT-1 constitutively traffics between the plasma membrane and endosomes via an endocytosis/recycling pathway, and forms a cluster. Here, we report substrate transport via GLT-1-induced formation of GLT-1 cluster accompanied by intracellular trafficking in rat astroglial,neuronal cultures. We constructed a recombinant adenovirus expressing enhanced green fluorescence protein (EGFP)-tagged GLT-1. Adenoviral infection resulted in the expression of functional GLT-1,EGFP preferentially in astrocytes, partly as clusters. Treatment with glutamate, but not N -methyl-D-aspartate, dramatically increased the number of GLT-1 clusters within 1 h. The estimated EC50 value of glutamate was 240 ,m. In addition, glutamate decreased the cell surface expression and increased the intracellular expression of GLT-1. The GLT-1 clusters were found in early and recycling endosomes and partly in lysosomes, and were inhibited by blockade of endocytotic pathways. Ionotropic and metabotropic glutamate receptor antagonists had no effect on glutamate-induced GLT-1 clustering. The non-transportable glutamate uptake inhibitors (2S,3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate and dihydrokainate, as well as Na+ -free conditions, prevented the glutamate-induced GLT-1 clustering, whereas the competitive substrates, aspartate and L- trans -pyrrolidine-2,4-dicarboxylate, induced GLT-1 clustering. Furthermore, the Na+/K+ -ATPase inhibitor, ouabain, and the Na+ ionophores, gramicidin and monensin, produced GLT-1 clustering. Modulators of intracellular Ca2+signaling or membrane depolarization had no effect on GLT-1 clustering. Taken together, these results suggest that Na+ influx associated with GLT-1 substrate transport triggers the formation of GLT-1 clusters accompanied by intracellular trafficking via endocytotic pathways in astrocytes. [source] MAP-kinase-activated protein kinase 2 expression and activity is induced after neuronal depolarizationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2008Tobias Thomas Abstract Mitogen-activated protein kinase-activated protein kinase (MK)2 is one of several downstream targets of p38 mitogen-activated protein kinase and has a well documented role in inflammation. Here, we describe a possible new function of MK2. We show that triggering depolarization by potassium chloride or increasing the cellular cAMP by forskolin treatment led to elevated levels of expression and activity of mouse MK2. In both treatments, the kinase inhibitor H89 completely prevented the up-regulation of MK2 at the transcript level. By the use of different cell lines we demonstrated that the induction of MK2 expression is characteristic of neuronal cells and is absent in fibroblasts, macrophages and kidney cells. In vivo, induction of a status epilepticus by systemic administration of the chemoconvulsant kainic acid resulted in markedly reduced neurodegeneration in the pyramidal layer of the hippocampus, dentate gyrus and hilus of MK2-deficient mice compared with wild-type mice. Together, our data suggest a possible role of MK2 in the cellular response after neuronal depolarization, in particular in excitotoxicity. [source] The nitric oxide/cyclic guanosine monophosphate pathway modulates the inspiratory-related activity of hypoglossal motoneurons in the adult ratEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2008Fernando Montero Abstract Motoneurons integrate interneuronal activity into commands for skeletal muscle contraction and relaxation to perform motor actions. Hypoglossal motoneurons (HMNs) are involved in essential motor functions such as breathing, mastication, swallowing and phonation. We have investigated the role of the gaseous molecule nitric oxide (NO) in the regulation of the inspiratory-related activity of HMNs in order to further understand how neural activity is transformed into motor activity. In adult rats, we observed nitrergic fibers and bouton-like structures in close proximity to motoneurons, which normally lack the molecular machinery to synthesize NO. In addition, immunohistochemistry studies demonstrated that perfusion of animals with a NO donor resulted in an increase in the levels of cyclic guanosine monophosphate (cGMP) in motoneurons, which express the soluble guanylyl cyclase (sGC) in the hypoglossal nucleus. Modulators of the NO/cGMP pathway were micro-iontophoretically applied while performing single-unit extracellular recordings in the adult decerebrated rat. Application of a NO synthase inhibitor or a sGC inhibitor induced a statistically significant reduction in the inspiratory-related activity of HMNs. However, excitatory effects were observed by ejection of a NO donor or a cell-permeable analogue of cGMP. In slice preparations, application to the bath of a NO donor evoked membrane depolarization and a decrease in rheobase, which were prevented by co-addition to the bath of a sGC inhibitor. These effects were not prevented by reduction of the spontaneous synaptic activity. We conclude that NO from afferent fibers anterogradely modulates the inspiratory-related activity of HMNs by a cGMP-dependent mechanism in physiological conditions. [source] Depolarization promotes GAD 65-mediated GABA synthesis by a post-translational mechanism in neural stem cell-derived neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008Nidhi Gakhar-Koppole Abstract Neuronal activity regulates neurogenesis and neuronal differentiation in the mammalian brain. The commencement of neurotransmitter expression establishes the neuronal phenotype and enables the formation of functional connectivity between neurons. In addition, release of neurotransmitters from differentiating neurons may modulate the behaviour of neural precursors. Here, we show that neuronal activity regulates ,-aminobutyric acid (GABA) expression in neurons generated from stem cells of the striatum and adult subventricular zone (SVZ). Differentiating neurons display spontaneous Ca2+ events, which are voltage-gated calcium channel (VGCC) dependent. Depolarization increases both the frequency of Ca2+ transients and the amount of Ca2+ influx in differentiating neurons. We show that depolarization-dependent GABA expression is regulated by the amplitude and not by the frequency of Ca2+ influx. Brief activation of VGCCs leads to Ca2+ influx that in turn promotes a rapid expression of GABA. Depolarization-dependent GABA expression does not require changes in gene expression. Instead, it involves cAMP-dependent protein kinase (PKA) and Ca2+ and phospholipid-dependent protein kinase (PKC) signalling. Activity increases the number of glutamic acid decarboxylase (GAD) 65-immunoreactive neurons in a PKA-dependent manner, without altering the expression of GAD 65, suggesting that depolarization promotes recruitment of GAD 65 by a post-translational mechanism. In line with this, depolarization does not permanently increase the expression of GABA in neurons derived from neural stem cells of the embryonic striatum, cortex and adult SVZ. Thus, neuronal activity does not merely accelerate neuronal differentiation but it may alter the mechanism of GABA synthesis in newly generated neurons. [source] Regulated recycling and plasma membrane recruitment of the high-affinity choline transporterEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007Fabiola M. Ribeiro Abstract The high-affinity choline transporter (CHT1) is responsible for uptake of choline from the synaptic cleft and supplying choline for acetylcholine synthesis. CHT1 internalization by clathrin-coated vesicles is proposed to represent a mechanism by which high-affinity choline uptake can be modulated. We show here that internalized CHT1 is rapidly recycled back to the cell surface in both human embryonic kidney cells (HEK 293 cells) and SH-SY5Y neuroblastoma cells. This rapidly recycling pool of CHT1 comprises about 10% of total CHT1 protein. In the SH-SY5Y neuroblastoma cell line K+ -depolarization promotes Ca2+ -dependent increase in the rate of CHT1 recycling to the plasma membrane without affecting the rate of CHT1 internalization. K+ -depolarization also increases the size of the pool of CHT1 protein that can be mobilized to the plasma membrane. Thus, the activity-dependent increase in plasma membrane CHT1 localization appears to be regulated by two mechanisms: (i) an increase in the rate of externalization of the intracellular CHT1 pool; and (ii) the recruitment of additional intracellular transporters to the recycling pool. [source] |