Home About us Contact | |||
Dependent Protein (dependent + protein)
Terms modified by Dependent Protein Selected AbstractsAlterations in Mitochondrial and Apoptosis-regulating Gene Expression in Photodynamic Therapy-resistant Variants of HT29 Colon Carcinoma Cells,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2005Xiao Yun Shen ABSTRACT Photodynamic therapy (PDT) is a novel cancer therapy inducing irreversible photodamage to tumor tissue via photosensitizer-mediated oxidative cytotoxicity. The cellular and molecular responses associated with PDT are only partially understood. We have reported previously the generation of several photosensitizer-specific PDT-resistant cell variants of HT29 human colon adenocarcinoma cells by selecting cells from sequential PDT treatment using different photosensitizers. In this report, we describe the use of messenger RNA (mRNA) differential display to identify genes that were differentially expressed in the parental HT29 cells compared with their resistant variants. In comparison with parental HT29 cells, mRNA expression was increased in the PDT-resistant cell variants for BNIP3, estrogen receptor-binding fragmentassociated gene 9, Myh-1c, cytoplasmic dynein light chain 1, small membrane protein I and differential dependent protein. In contrast, expression in the PDT-resistant variants was downregulated for NNX3, human HepG2 3,region Mbol complementary DNA, glutamate dehydrogenase, hepatomaderived growth factor and the mitochondrial genes coding for 16S ribosomal RNA (rRNA) and nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 4. The reduction for mitochondrial 16S rRNA in the PDT-resistant variants was confirmed by Northern blotting, and the elevated expression of the proapoptotic BNIP3 in the PDT-resistant variants was confirmed by Northern and Western blotting analysis. We also examined the expression of some additional apoptosis-regulating genes using Western blotting. We show an increased expression of Bcl-2 and heat shock protein 27 and a downregulation of Bax in the PDT-resistant variants. In addition, the mutant p53 levels in the parental HT29 cells were reduced substantially in the PDT-resistant variants. We suggest that the altered expression in several mitochondria1 and apoptosisregulating genes contributes to PDT resistance. [source] TUSC4/NPRL2, a novel PDK1-interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signalingCANCER SCIENCE, Issue 9 2008Atsuo Kurata 3-Phosphoinositide,dependent protein kinase-1 (PDK1) is a key regulator of cell proliferation and survival signal transduction. PDK1 is known to be constitutively active and is further activated by Src-mediated phosphorylation at the tyrosine-9, -373, and -376 residues. To identify novel regulators of PDK1, we performed E. coli -based two-hybrid screening and revealed that tumor suppressor candidate 4 (TUSC4), also known as nitrogen permease regulator-like 2 (NPRL2), formed a complex with PDK1 and suppressed Src-dependent tyrosine phosphorylation and activation of PDK1 in vitro and in cells. The NH2 -terminal 133 amino acid residues of TUSC4 were involved in binding to PDK1. The deletion mutant of TUSC4 that lacked the NH2 -terminal domain showed no inhibitory effects on PDK1 tyrosine phosphorylation or activation. Thus, complex formation is indispensable for TUSC4-mediated PDK1 inactivation. The siRNA-mediated down-regulation of TUSC4 induced cell proliferation, while ectopic TUSC4 expression inactivated the PDK1 downstream signaling pathway, including Akt and p70 ribosomal protein S6 kinase, and increased cancer cell sensitivity to several anticancer drugs. Our results suggest that TUSC4/NPRL2, a novel PDK1-interacting protein, plays a role in regulating the Src/PDK1 signaling pathway and cell sensitivity to multiple cancer chemotherapeutic drugs. (Cancer Sci 2008; 99: 1827,1834) [source] Study of the effects of interferon a on several human hepatoma cell lines: analysis of the signalling pathway of the cytokine and of its effects on apoptosis and cell proliferationLIVER INTERNATIONAL, Issue 2 2004A. Legrand Background: Interferon , (IFN,), currently used for the treatment of chronic viral hepatitis, is also known to prevent the development of hepatocellular carcinoma (HCC), the mechanism of this action being still debatable. Aims: To study thoroughly in human hepatoma cell lines (HHL) , Hep3B, HepG2, HuH7, SKHep1, and Chang-Liver , submitted to rhIFN,, the signalling pathway of IFN,, the binding activity of the cytokine on specific gamma-activated sequence (GAS) and interferon-stimulated regulatory element (ISRE) nuclear sequences, and its effects on apoptosis and cell proliferation. Methods: The behaviour of signal transducer and activator of transcription (STAT)1, STAT2, p48IRF9 and the binding of nuclear proteins were investigated by immunoblot and electro-mobility shift assay. Expression of some IFN,-dependent proteins , p21/WAF1, inducible nitric oxide synthase, IRF1 and 2 , were studied by immunoblot. Apoptosis and the cell cycle were studied by morphological and biochemical methods. Results: Transduction of INF, was unaltered, although there were some variations in the different HHL. Nuclear protein binding to GAS or ISRE showed that ISRE was mainly involved. Apoptosis did not occur. The cell cycle was slightly modified in HuH7. Three GAS- and/or ISRE-dependent proteins increased, suggesting that IFN, may have some biological effects on HHL. Conclusions: The IFN, signalling pathway is functional in several HHL, but the cytokine has no apoptotic effect and a moderate anti-proliferative effect. This suggests that the preventive role of IFN, on HCC cannot be explained by an apoptotic and/or an anti-proliferative effect, but possibly by its action on several specific nuclear sequences that protect liver cells from transformation. [source] Pseudomonas putida KT2440 responds specifically to chlorophenoxy herbicides and their initial metabolitesPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 11 2006Dirk Benndorf Dr. Abstract Pseudomonas putida,KT2440 is often used as a model to investigate toxicity mechanisms and adaptation to hazardous chemicals in bacteria. The objective of this paper was to test the impact of the chlorophenoxy herbicides 2,4-dichlorophenoxyacetic acid,(2,4-D) and 2-(2,4-dichlorophenoxy)propanoic acid,(DCPP) and their metabolites 2,4-dichlorophenol,(DCP) and 3,5-dichlorocatechol,(DCC), on protein expression patterns and physiological parameters. Both approaches showed that DCC has a different mode of action and induces different responses than DCPP, 2,4-D and DCP. DCC was the most toxic compound and was active as an uncoupler of oxidative phosphorylation. It repressed the synthesis of ferric uptake regulator (Fur)-dependent proteins, e.g. fumarase,C and L -ornithine N5-oxygenase, which are involved in oxidative stress response and iron uptake. DCPP, 2,4-D and DCP were less toxic than DCC. They disturbed oxidative phosphorylation to a lesser extent by a yet unknown mechanism. Furthermore, they repressed enzymes of energy-consuming biosynthetic pathways and induced membrane transporters for organic substrates. A TolC homologue component of multidrug resistance transporters was found to be induced, which is probably involved in the removal of lipophilic compounds from membranes. [source] |