Home About us Contact | |||
Dependent Phosphorylation (dependent + phosphorylation)
Selected AbstractsGenistein prevents thyroid hormone-dependent tail regression of Rana catesbeiana tadpoles by targetting protein kinase C and thyroid hormone receptor ,DEVELOPMENTAL DYNAMICS, Issue 3 2007L. Ji Abstract Thyroid hormone (TH)-regulated gene expression is mainly mediated by TH binding to nuclear thyroid hormone receptors (TRs). Despite extensive studies in mammalian cell lines that show that phosphorylation signaling pathways are important in TH action, little is known about their roles on TH signaling in vivo during development. Anuran metamorphosis is a postembryonic process that is absolutely dependent upon TH and tadpole tail resorption can be precociously induced by exogenous administration of 3,5,3,-triiodothyronine (T3). We demonstrate that genistein (a major isoflavone in soy products and tyrosine kinase inhibitor) and the PKC inhibitor (H7) prevent T3 -induced regression of the Rana catesbeiana tadpole tail. T3 -induced protein kinase C tyrosine phosphorylation and kinase activity are inhibited by genistein while T3 -induced up-regulation of TR, mRNA, but not TR, mRNA, is significantly attenuated, most likely through inhibition of T3 -dependent phosphorylation of the TR, protein. This phosphorylation may be modulated through PKC. These data demonstrate that T3 signaling in the context of normal cells in vivo includes phosphorylation as an important factor in establishing T3 -dependent tail regression during development. Developmental Dynamics 236:777,790, 2007. © 2007 Wiley-Liss, Inc. [source] TGF-,3,dependent SMAD2 phosphorylation and inhibition of MEE proliferation during palatal fusionDEVELOPMENTAL DYNAMICS, Issue 3 2003Xiao-Mei Cui Abstract Transforming growth factor (TGF) -,3 is known to selectively regulate the disappearance of murine medial edge epithelium (MEE) during palatal fusion. Previous studies suggested that the selective function of TGF-,3 in MEE was conducted by TGF-, receptors. Further studies were needed to demonstrate that the TGF-, signaling mediators were indeed expressed and phosphorylated in the MEE cells. SMAD2 and SMAD3 were both present in the MEE, whereas SMAD2 was the only one phosphorylated during palatal fusion. SMAD2 phosphorylation was temporospatially restricted to the MEE and correlated with the disappearance of the MEE. No phosphorylated SMAD2 was found in MEE in TGF-,3,/, mice, although nonphosphorylated SMAD2 was present. The results suggest that TGF-,3 is required for initiating and maintaining SMAD2 phosphorylation in MEE. Phospho-SMAD3 was not detectable in palate during normal palatal fusion. Previous results suggested TGF-,,induced cessation of DNA synthesis in MEE cells during palatal fusion in vitro. The present results provide evidence that inhibition of MEE proliferation in vivo was controlled by endogenous TGF-,3. The number of 5-bromo-2,-deoxyuridine (BrdU) -labeled MEE cells was significantly reduced in TGF-,3+/+ compared with TGF-,3,/, mice when the MEE seam formed (t -test, P < 0.05). This finding suggests that TGF-,3 is required for inhibiting MEE proliferation during palatal fusion. The inhibition of MEE proliferation may be mediated by TGF-,3,dependent phosphorylation of SMAD2. Developmental Dynamics 227:387,394, 2003. © 2003 Wiley-Liss, Inc. [source] Activity-dependent somatostatin gene expression is regulated by cAMP-dependent protein kinase and Ca2+ -calmodulin kinase pathwaysJOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2010Isabel Sánchez-Muñoz Abstract Ca2+ influx through L-type voltage-gated Ca2+ channels (L-VSCC) is required for K+ -induced somatostatin (SS) mRNA. Increase in intracellular Ca2+ concentration leads to the activation of cyclic AMP-responsive element binding protein (CREB), a key regulator of SS gene transcription. Several different protein kinases possess the capability of driving CREB upon membrane depolarization. We investigated which of the signalling pathways involved in CREB activation mediates SS gene induction in response to membrane depolarization in cerebrocortical cells exposed to 56 mM K+. Activity dependent phosphorylation of CREB in Ser133 was immunodetected. Activation of CREB was biphasic showing two peaks at 5 and 60 min. The selective inhibitors of extracellular signal related protein kinase/mitogen-activated protein kinase (ERK/MAPK) PD098059, cyclic-AMPdependent protein kinase (cAMP/PKA) H89 and RpcAMPS, and Ca2+/calmodulin-dependent protein kinases (CaMKs) pathways KN62 and KN93 were used to determine the signalling pathways involved in CREB activation. Here we show that the early activation of CREB was dependent on cAMP/PKA along with CaMKs pathways whereas the ERK/MAPK and CaMKs were implicated in the second peak. We observed that H89, RpcAMPS, KN62 and KN93 blocked K+ -induced SS mRNA whereas PD098059 did not. These findings indicate that K+ -induced SSmRNA is mediated by the activation of cAMP/PKA and CaMKs pathways, thus suggesting that the early activation of CREB is involved in the induction of SS by neuronal activity. We also demonstrated, using transient transfections of cerebrocortical cells, that K+ induces the transcriptional regulation of the SS gene through the cAMP-responsive element (CRE) sequence located in the SS promoter. © 2009 Wiley-Liss, Inc. [source] Hormonal-dependent recruitment of Na+,K+ -ATPase to the plasmalemma is mediated by PKC, and modulated by [Na+]iBRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2002Claudia E Budu The present study demonstrates that stimulation of hormonal receptors of proximal tubule cells with the serotonin-agonist 8-hydroxy-2-(di-n-propylamino) tetraline (8-OH-DPAT) induces an augmentation of Na+,K+ -ATPase activity that results from the recruitment of enzyme molecules to the plasmalemma. Cells expressing the rodent wild-type Na+,K+ -ATPase ,-subunit had the same basal Na+,K+ -ATPase activity as cells expressing the ,-subunit S11A or S18A mutants, but stimulation of Na+,K+ -ATPase activity was completely abolished in either mutant. 8-OH-DPAT treatment of OK cells led to PKC, -dependent phosphorylation of the ,-subunit Ser-11 and Ser-18 residues, and determination of enzyme activity with the S11A and S18A mutants indicated that both residues are essential for the agonist-dependent stimulation of Na+,K+ -ATPase activity. When cells were treated with both dopamine and 8-OH-DPAT, an activation of Na+,K+ -ATPase was observed at basal intracellular sodium concentration (,9 mM), and this activation was gradually reduced and became a significant inhibition as the concentration of intracellular sodium gradually increased from 9 to 19 mM. Thus, besides the antagonistic effects of dopamine and 8-OH-DPAT, intracellular sodium modulates whether an activation or an inhibition of Na+,K+ -ATPase is produced. British Journal of Pharmacology (2002) 137, 1380,1386. doi:10.1038/sj.bjp.0704962 [source] |