Dependent Pathway (dependent + pathway)

Distribution by Scientific Domains
Distribution within Medical Sciences


Selected Abstracts


Alcohol Up-Regulates TLR2 Through a NO/cGMP Dependent Pathway

ALCOHOLISM, Issue 1 2010
Kristina L Bailey
Background:, Heavy alcohol consumption is associated with severe bronchitis. This is likely related to increased inflammation in the airways of alcohol abusers. Toll-like receptor 2 (TLR2) is an important mediator of inflammation in the airway epithelium. TLR2 initiates an inflammatory cascade in response to gram-positive bacteria. We have previously shown that alcohol up-regulates TLR2 in the airway epithelium. However, the mechanism of alcohol-mediated up-regulation of TLR2 has not been identified. Methods:, A human airway epithelial cell line, 16HBE14o,, was exposed to biologically relevant concentrations of alcohol (100 mM) in the presence and absence of N, -Nitro- l -arginine methyl ester hydrochloride, a nitric oxide (NO) synthase inhibitor; and Rp-8-Br-cGMP-S, an antagonist analogue of cGMP. TLR2 was measured using real-time PCR and Western blots. In addition, 16HBE14o, cells were incubated with sodium nitroprusside (SNP), an NO donor, and 8-Br-cGMP, a cGMP analogue. TLR2 was measured using real-time PCR. Results:,N, -Nitro- l -arginine methyl ester hydrochloride blocked the alcohol-mediated up-regulation of TLR2. This indicates that NO plays a key role in alcohol's up-regulation of TLR2. SNP, a NO donor, up-regulated TLR2. Rp-8-Br-CGMP-S attenuated alcohol's up-regulation of TLR2, suggesting that NO was working through cGMP/PKG. 8-Br-cGMP up-regulated TLR2, also demonstrating the importance of cGMP/PKG. Conclusions:, Alcohol up-regulates TLR2 through a NO/cGMP/PKG dependent pathway in the airway epithelium. This is an important observation in the understanding how alcohol modulates airway inflammation. In addition, this is the first time that cyclic nucleotides have been shown to play a role in the regulation of TLR2. [source]


,3-Tubulin is induced by estradiol in human breast carcinoma cells through an estrogen-receptor dependent pathway

CYTOSKELETON, Issue 7 2009
Jennifer Saussede-Aim
Abstract Microtubules are involved in a variety of essential cell functions. Their role during mitosis has made them a target for anti-cancer drugs. However development of resistance has limited their use. It has been established that enhanced ,3-tubulin expression is correlated with reduced response to antimicrotubule agent-based chemotherapy or worse outcome in a variety of tumor settings. However little is known regarding the regulation of ,3-tubulin expression. We investigated the regulatory mechanisms of expression of ,3-tubulin in the MCF-7 cell line, a model of hormone-dependent breast cancer. Exposure of MCF-7 cells to estradiol was found to induce ,3-tubulin mRNA as well as ,3-tubulin protein expression. Conversely, we did not observe induction of ,3-tubulin mRNA by estradiol in MDA-MB-231 cells which are negative for the estrogen receptor (ER). In order to determine whether ,3-tubulin up-regulation is mediated through the ER pathway, MCF-7 cells were exposed to two ER modulators. Exposure to tamoxifen, a selective estrogen receptor modulator, completely abolished the ,3-tubulin mRNA induction due to estradiol in MCF-7 cells. This result was confirmed with fulvestrant, a pure antagonist of ER. These results demonstrate that the effect of estradiol on ,3-tubulin transcription is mediated through an ER dependent pathway. Cell Motil. Cytoskeleton 66:378,388, 2009. © 2009 Wiley-Liss, Inc. [source]


3T3-L1 adipocyte apoptosis induced by thiazolidinediones is peroxisome proliferator-activated receptor-,-dependent and mediated by the caspase-3-dependent apoptotic pathway

FEBS JOURNAL, Issue 3 2010
Yuanyuan Xiao
Although thiazolidinediones (TZDs) are potent promoters of adipogenesis in the preadipocyte, they induce apoptosis in several other cell types, such as cancer cells, endothelial cells and T-lymphocytes. In this study, we investigated the proapoptotic effect of TZDs in mature 3T3-L1 adipocytes, which express high levels of the peroxisome proliferator-activated receptor-, (PPAR,) protein. Apoptosis was induced in mature 3T3-L1 adipocytes by treatment with troglitazone, pioglitazone or prostaglandin J2, and could be blocked by the PPAR, antagonist GW9662. Treatment with PPAR, agonists also decreased Akt-1 protein and phosphorylation levels without affecting phosphoinositide 3-kinase and PTEN. Further analysis indicated that in troglitazone-treated 3T3-L1 adipocytes, Bad phosphorylation and Bcl-2 protein levels were reduced, and Bax translocation to the mitochondria was increased. Subsequently, cytochrome c release and caspase-3 cleavage were observed. TZD-induced adipocyte apoptosis could be blocked by the caspase-3 inhibitor Ac-DEVD-CHO or by overexpression of Bcl2. In cultured rat primary adipocytes, similar apoptosis-inducing effects of troglitazone were also observed. Thus, TZDs promote apoptosis in adipocytes through a PPAR,-dependent pathway. This apoptosis is mediated by the inhibition of Akt-1, which decreases Bad phosphorylation and activates the mitochondrial apoptotic pathway. [source]


Insertion of light-harvesting chlorophyll a/b protein into the thylakoid

FEBS JOURNAL, Issue 4 2000
Topographical studies
The major light-harvesting chlorophyll a/b -binding protein (Lhcb1,2) of photosystem II is inserted into the thylakoid via the signal recognition particle dependent pathway. However, the mechanism by which the protein enters the membrane is at this time unknown. In order to define some topographical restrictions for this process, we constructed several recombinant derivatives of Lhcb1 carrying hexahistidine tags at either protein terminus or in the stromal loop domain. Additionally, green fluorescent protein (GFP) was fused to either terminus. None of the modifications significantly impair the pigment-binding properties of the protein in the in vitro reconstitution of LHCII. With the exception of the C-terminal GFP fusion, all mutants stably insert into isolated thylakoids in the absence of Ni2+ ions. The addition of low concentrations of Ni2+ ions abolishes the thylakoid insertion of C-terminally His-tagged mutants whereas the other His-tagged proteins fail to insert only at higher Ni2+ concentrations. The C-terminus of Lhcb1 must cross the membrane during protein insertion whereas the other sites of Lhcb1 modification are positioned on the stromal side of LHCII. We conclude that a Ni2+ -complexed His tag and fusion to GFP inhibit translocation of the protein C-terminus across the thylakoid. Our observations indicate that the N-terminal and stromal domain of Lhcb1 need not traverse the thylakoid during protein insertion and are consistent with a loop mechanism in which only the C-terminus and the lumenal loop of Lhcb1 are translocated across the thylakoid. [source]


Phentolamine mesylate relaxes rabbit corpus cavernosum by a nonadrenergic, noncholinergic mechanism

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 1 2001
Subbarao Vemulapalli
The contribution of NO-cGMP dependent pathway to phentolamine mesylate-evoked nonadrenergic, noncholinergic relaxation of rabbit corpus cavernosum was investigated in vitro. Stimulation of nonadrenergic, noncholinergic neurons of the rabbit corpus cavernosum elicited frequency-related relaxation that was significantly attenuated by L-NAME (NO synthase inhibitor) or ODQ (an inhibitor of guanylate cyclase). Moreover, tetrodotoxin, a sodium channel blocker, abolished the electrical field stimulation-induced relaxation of rabbit corpus cavernosum, suggesting that neuronal release of NO mediates relaxation to electrical field stimulation. Phentolamine mesylate (30 and 100 nM) dose-dependently enhanced electrical field stimulation-induced relaxation of the rabbit corpus cavernosum. Prazosin (30 ,M) and yohimbine (30 ,M) failed to affect phentolamine mesylate-mediated nonadrenergic, noncholinergic rabbit penile smooth muscle relaxation, suggesting that phentolamine relaxes rabbit corpus cavernosum independent of ,-adrenergic receptor blockade. In contrast, pretreatment of the rabbit cavernosal strips with L-NAME significantly-attenuated electrical field stimulation produced relaxations to phentolamine mesylate, suggesting that phentolamine mesylate relaxes rabbit corpus cavernosum by activating NO synthase. The data suggest that phentolamine mesylate relaxes nonadrenergic noncholinergic neurons of the rabbit corpus cavernosum by activating NO synthase and is independent of ,-adrenergic receptor blockade. [source]


Decay-accelerating factor induction by tumour necrosis factor-,, through a phosphatidylinositol-3 kinase and protein kinase C-dependent pathway, protects murine vascular endothelial cells against complement deposition

IMMUNOLOGY, Issue 2 2003
Saifur R. Ahmad
Summary We have shown that human endothelial cells (EC) are protected against complement-mediated injury by the inducible expression of decay-accelerating factor (DAF). To understand further the importance of DAF regulation, we characterized EC DAF expression on murine EC in vitro and in vivo using a model of glomerulonephritis. Flow cytometry using the monoclonal antibody (mAb) Riko-3 [binds transmembrane- and glycosylphosphatidylinositol (GPI)-anchored DAF], mAb Riko-4 (binds GPI-anchored DAF) and reverse transcription,polymerase chain reaction (RT,PCR), demonstrated that murine EC DAF is GPI-anchored. Tumour necrosis factor-, (TNF-,) increased EC DAF expression, detectable at 6 hr and maximal at 24,48 hr poststimulation. DAF upregulation required increased steady-state DAF mRNA and protein synthesis. In contrast, no increased expression of the murine complement receptor-related protein-Y (Crry) was seen with TNF-,. DAF upregulation was mediated via a protein kinase C (PKC),, phosphoinositide-3 kinase (PI-3 kinase), p38 mitogen-activated protein kinase (MAPK) and nuclear factor-,B (NF-,B)-dependent pathway. The increased DAF was functionally relevant, resulting in a marked reduction in C3 deposition following complement activation. In a nephrotoxic nephritis model, DAF expression on glomerular capillaries was significantly increased 2 hr after the induction of disease. The demonstration of DAF upregulation above constitutive levels suggests that this may be important in the maintenance of vascular integrity during inflammation, when the risk of complement-mediated injury is increased. The mouse represents a suitable model for the study of novel therapeutic approaches by which vascular endothelium may be conditioned against complement-mediated injury. [source]


Biochemical and ultrastructural alterations in the rat ventral prostate due to repetitive alcohol drinking

JOURNAL OF APPLIED TOXICOLOGY, Issue 4 2007
M. I. Díaz Gómez
Abstract Previous studies showed that cytosolic and microsomal fractions from rat ventral prostate are able to biotransform ethanol to acetaldehyde and 1-hydroxyethyl radicals via xanthine oxidase and a non P450 dependent pathway respectively. Sprague Dawley male rats were fed with a Lieber and De Carli diet containing ethanol for 28 days and compared against adequately pair-fed controls. Prostate microsomal fractions were found to exhibit CYP2E1-mediated hydroxylase activity significantly lower than in the liver and it was induced by repetitive ethanol drinking. Ethanol drinking led to an increased susceptibility of prostatic lipids to oxidation, as detected by t-butylhydroperoxide-promoted chemiluminiscence emission and increased levels of lipid hydroperoxides (xylenol orange method). Ultrastructural alterations in the epithelial cells were observed. They consisted of marked condensation of chromatin around the perinuclear membrane, moderate dilatation of the endoplasmic reticulum and an increased number of epithelial cells undergoing apoptosis. The prostatic alcohol dehydrogenase activity of the stock rats was 4.84 times lower than that in the liver and aldehyde dehydrogenase activity in their microsomal, cytosolic and mitochondrial fractions was either not detectable or significantly less intense than in the liver. A single dose of ethanol led to significant acetaldehyde accumulation in the prostate. The results suggest that acetaldehyde accumulation in prostate tissue might result from both acetaldehyde produced in situ but also because of its low aldehyde dehydrogenase activity and its poor ability to metabolize acetaldehyde arriving via the blood. Acetaldehyde, 1-hydroxyethyl radical and the oxidative stress produced may lead to epithelial cell injury. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Advanced oxidation protein products inhibit differentiation and activate inflammation in 3T3-L1 preadipocytes,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010
Qiu Gen Zhou
Accumulation of advanced oxidation protein products (AOPPs) is prevalent in metabolic syndromes, a condition with impaired preadipocytes differentiation. In the present study, we tested the hypothesis that AOPPs disturb preadipocyte differentiation. Exposure of 3T3-L1 preadipocytes to increased levels of AOPPs inhibited accumulation of intracellular triglyceride and decreased the expression of the essential markers of matured adipocytes, such as adipocyte fatty-acid-binding protein (aP2), CAAT/enhancer-binding protein (C/EBP)-,, and peroxisome proliferator-activated receptor (PPAR)-,, in response to standard adipogenic induction. Inhibitory effects of AOPPs on preadipocytes differentiation was time sensitive, which occurred at the early stage of differentiation. In the presence of AOPPs, induction of preadipocytes differentiation resulted in upregulated expression of C/EBP homologous protein (CHOP) and CUG-Triplet repeat-binding protein (CUGBP), two important inhibitors of preadipocytes differentiation. In addition, treatment with AOPPs increased abundance of C/EBP-,-liver enriched inhibitory protein (C/EBP-,-LIP), a truncated C/EBP-, isoform without adipogenic activity. Moreover, AOPPs-treated preadipocytes expressed a macrophage marker F4/80 and overexpressed tumor necrosis factor-, and interleukin-6 via nuclear factor-,B (NF-,B)-dependent pathway. However, blocking inflammation with NF-,B inhibitor failed to improve AOPPs-induced inhibition of preadipocytes differentiation. These data suggest that accumulation of AOPPs may inhibit differentiation of preadipocytes and activate inflammation in these cells. This information might have implication for understanding the impairment of preadipocytes differentiation and fat inflammation seen in metabolic syndrome. J. Cell. Physiol. 225: 42,51, 2010. © 2010 Wiley-Liss, Inc. [source]


The nuclear localization of SET mediated by imp,3/imp, attenuates its cytosolic toxicity in neurons

JOURNAL OF NEUROCHEMISTRY, Issue 1 2007
Dianbo Qu
Abstract SET is a multi-functional protein in proliferating cells. Some of the proposed functions of SET suggest an important nuclear role. However, the nuclear import pathway of SET is also unknown and the function of SET in neurons is unclear. Presently, using cortical neurons, we report that the nuclear import of SET is mediated by an imp,/imp,-dependent pathway. Nuclear localization signal, 168KRSSQTQNKASRKR181, in SET interacts with imp,3, which recruits imp, to form a ternary complex, resulting in efficient transportation of SET into nucleus. By in vitro nuclear import assay based on digitonin-permeabilized neurons, we further demonstrated that the nuclear import of SET relies on Ran GTPase. We provide evidence that this nuclear localization of SET is important in neuronal survival. Under basal conditions, SET is predominately nuclear. However, upon death induced by genotoxic stress, endogenous SET decreases in the nucleus and increases in the cytoplasm. Consistent with a toxic role of SET in the cytoplasm, targeted expression of SET to the cytoplasm exacerbates death compared to wild type SET expression which is protective following DNA damage. Taken together, our results indicate that SET is imported into the nucleus through its association with imp,3/imp,, and that localization of SET is important in regulation of neuronal death. [source]


Implication of Rho-associated kinase in the elevation of extracellular dopamine levels and its related behaviors induced by methamphetamine in rats

JOURNAL OF NEUROCHEMISTRY, Issue 2 2003
Minoru Narita
Abstract A growing body of evidence suggests that several protein kinases are involved in the expression of pharmacological actions induced by a psychostimulant methamphetamine. The present study was designed to investigate the role of the Rho/Rho-associated kinase (ROCK)-dependent pathway in the expression of the increase in extracellular levels of dopamine in the nucleus accumbens and its related behaviors induced by methamphetamine in rats. Methamphetamine (1 mg/kg, subcutaneously) produced a substantial increase in extracellular levels of dopamine in the nucleus accumbens, with a progressive augmentation of dopamine-related behaviors including rearing and sniffing. Methamphetamine also induced the decrease in levels of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA). Both the increase in extracellular levels of dopamine and the induction of dopamine-related behaviors by methamphetamine were significantly suppressed by pretreatment with an intranucleus accumbens injection of a selective ROCK inhibitor Y-27632. In contrast, Y-27632 had no effect on the decrease in levels of DOPAC and HVA induced by methamphetamine. Under these conditions, there were no changes in protein levels of membrane-bound RhoA in the nucleus accumbens following methamphetamine treatment. It is of interest to note that the microinjection of Y-27632 into the nucleus accumbens failed to suppress the increases in extracellular levels of dopamine, DOPAC, and HVA in the nucleus accumbens induced by subcutaneous injection of a prototype of µ-opioid receptor agonist morphine (10 mg/kg). Furthermore, perfusion of a selective blocker of voltage-dependent Na+ channels, tetrodotoxin (TTx) into the rat nucleus accumbens did not affect the increase in extracellular levels of dopamine in the rat nucleus accumbens by methamphetamine, whereas the morphine-induced dopamine elevation was eliminated by this application of TTx. The extracellular level of dopamine in the nucleus accumbens was also increased by perfusion of a selective dopamine re-uptake inhibitor 1-[2-[bis(4-fluorophenyl)methoxy]-4-(3-phenylpropyl)piperazine (GBR-12909) in the nucleus accumbens. This effect was not affected by pretreatment with intranucleus accumbens injection of Y-27632. These findings provide first evidence that Rho/ROCK pathway in the nucleus accumbens may contribute to the increase in extracellular levels of dopamine in the nucleus accumbens evoked by a single subcutaneous injection of methamphetamine. In contrast, this pathway is not essential for the increased level of dopamine in this region induced by morphine, providing further evidence for the different mechanisms of dopamine release by methamphetamine and morphine in rats. [source]


PGE2 and IL-6 production by fibroblasts in response to titanium wear debris particles is mediated through a Cox-2 dependent pathway

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2004
Susan V. Bukata
Aseptic loosening of orthopaedic implants is precipitated by wear debris-induced osteolysis. Central to this process are the pro-inflammatory mediators that are produced in response to wear by the fibroblastic cells, which comprise the majority of periprosthetic membranes. Since this pro-inflammatory cascade is mediated by a plethora of factors with redundant functions, it is imperative to establish a hierarchy. Two well-known fibroblast derived pro-inflammatory factors that stimulate wear debris-induced osteoclastic resorption are prostaglandin E2 (PGE2) and IL-6. However, their relationship to each other in this process is poorly defined. Here we show immunohistochemistry of retrieval membranes indicating that COX-2 is the principal cyclooxygenase responsible for PGE2 production in fibroblasts around failed implants. We also performed in vitro experiments with fibroblasts derived from wild-type (WT), COX-1 (,/,) and COX-2 (,/,) mice, which demonstrated that COX-2 is required for Ti wear debris-induced PGE2 production. Interestingly, COX-2 was also required for IL-6 production in these assays, which could be rescued by the addition of exogenous PGE2 (10,6 M). Pharmacology studies that utilized the COX-1 selective inhibitor SC 560, the COX-2 selective inhibitor celecoxib, and the nonselective COX inhibitor indomethacin confirmed these results. Taken together, these results indicate that selective inhibition of prostaglandin signaling could favorably impact aseptic loosening beyond its direct effects on PGE2 synthesis, in that it inhibits downstream pro-inflammatory/pro-osteoclastic cytokine production. © 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


Alcohol Up-Regulates TLR2 Through a NO/cGMP Dependent Pathway

ALCOHOLISM, Issue 1 2010
Kristina L Bailey
Background:, Heavy alcohol consumption is associated with severe bronchitis. This is likely related to increased inflammation in the airways of alcohol abusers. Toll-like receptor 2 (TLR2) is an important mediator of inflammation in the airway epithelium. TLR2 initiates an inflammatory cascade in response to gram-positive bacteria. We have previously shown that alcohol up-regulates TLR2 in the airway epithelium. However, the mechanism of alcohol-mediated up-regulation of TLR2 has not been identified. Methods:, A human airway epithelial cell line, 16HBE14o,, was exposed to biologically relevant concentrations of alcohol (100 mM) in the presence and absence of N, -Nitro- l -arginine methyl ester hydrochloride, a nitric oxide (NO) synthase inhibitor; and Rp-8-Br-cGMP-S, an antagonist analogue of cGMP. TLR2 was measured using real-time PCR and Western blots. In addition, 16HBE14o, cells were incubated with sodium nitroprusside (SNP), an NO donor, and 8-Br-cGMP, a cGMP analogue. TLR2 was measured using real-time PCR. Results:,N, -Nitro- l -arginine methyl ester hydrochloride blocked the alcohol-mediated up-regulation of TLR2. This indicates that NO plays a key role in alcohol's up-regulation of TLR2. SNP, a NO donor, up-regulated TLR2. Rp-8-Br-CGMP-S attenuated alcohol's up-regulation of TLR2, suggesting that NO was working through cGMP/PKG. 8-Br-cGMP up-regulated TLR2, also demonstrating the importance of cGMP/PKG. Conclusions:, Alcohol up-regulates TLR2 through a NO/cGMP/PKG dependent pathway in the airway epithelium. This is an important observation in the understanding how alcohol modulates airway inflammation. In addition, this is the first time that cyclic nucleotides have been shown to play a role in the regulation of TLR2. [source]


A differential role of the platelet ADP receptors P2Y1 and P2Y12 in Rac activation

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 10 2005
C. SOULET
Summary., The dynamics of the actin cytoskeleton, largely controlled by the Rho family of small GTPases (Rho, Rac and Cdc42), is critical for the regulation of platelet responses such as shape change, adhesion, spreading and aggregation. Here, we investigated the role of adenosine diphosphate (ADP), a major co-activator of platelets, on the activation of Rac. ADP rapidly activated Rac in a dose-dependent manner and independently of GPIIb/IIIa and phosphoinositide 3-kinase. ADP alone, used as a primary agonist, activated Rac and its effector PAK via its P2Y1 receptor, through a Gq -dependent pathway and independently of P2Y12. The P2Y12 receptor appeared unable to activate the GTPase per se as also observed for the adenosine triphosphate receptor P2X1. Conversely, secreted ADP strongly potentiated Rac activation induced by Fc,RIIa clustering or TRAP via its P2Y12 receptor, the target of antithrombotic thienopyridines. Stimulation of the ,2A -adrenergic receptor/Gz pathway by epinephrine was able to replace the P2Y12/Gi -mediated pathway to amplify Rac activation by Fc,RIIa or by the thrombin receptor PAR-1. This co-activation appeared necessary to reach a full stimulation of Rac as well as PAK activation and actin polymerization and was blocked by a G-protein ,, subunits scavenger peptide. [source]


Aldosterone induces collagen synthesis via activation of extracellular signal-regulated kinase 1 and 2 in renal proximal tubules

NEPHROLOGY, Issue 8 2008
GUOSHUANG XU
SUMMARY: Aim: Aldosterone plays a crucial role in renal fibrosis by inducing mesangial cell proliferation and promoting collagen synthesis in renal fibroblasts. However, renal proximal tubule involvement in aldosterone-induced collagen synthesis has not yet been identified. The aim of this study was to examine the potential role of aldosterone in collagen expression and its possible mineralocorticoid receptor (MR)-dependent pathway, mediated by activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured human renal proximal tubular epithelial (HKC) cells. Methods: After HKC cells were stimulated by aldosterone with different concentrations for various time and periods, the gene expression and protein synthesis of collagen I, II, III and IV were measured by real-time polymerase chain reaction and western blot, respectively. ERK1/2 activation, ,-smooth muscle actin (,-SMA), and E-cadherin were also detected by western blot. Results: Aldosterone can increase ERK1/2 phosphorylation of human renal proximal tubular epithelial cells in a time- and dose-dependent manner. Although aldosterone had no effect on collagen I and II expression, it increased expression of ,-SMA and collagen III and IV and decreased that of E-cadherin in HKC cells after 48 h. These effects could be prevented by a ERK pathway inhibitor, U0126, or by a selective MR antagonist, spironolactone. Conclusion: The results suggest that aldosterone plays a pivotal role in tubulointerstitial fibrosis by promoting tubular epithelial,mesenchymal transition and collagen synthesis in proximal tubular cells. The process is MR-dependent, and mediated by ERK1/2 mitogen-activated protein kinase pathway. [source]


Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway

THE PLANT JOURNAL, Issue 2 2008
Mathilde Séguéla
Summary Plants display a number of biochemical and developmental responses to low iron availability in order to increase iron uptake from the soil. The ferric-chelate reductase FRO2 and the ferrous iron transporter IRT1 control iron entry from the soil into the root epidermis. In Arabidopsis, expression of IRT1 and FRO2 is tightly controlled to maintain iron homeostasis, and involves local and long-distance signals, as well as transcriptional and post-transcriptional events. FIT encodes a putative basic helix-loop-helix (bHLH) transcription factor that regulates iron uptake responses in Arabidopsis. Here, we uncover a new regulation of the root iron uptake genes. We show that IRT1, FRO2 and FIT are repressed by the exogenous addition of cytokinins (CKs), and that this repression acts at the level of transcript accumulation, and depends on the AHK3 and CRE1 CK receptors. The CKs and iron-deficiency signals act through distinct pathways to regulate the soil iron uptake genes, as (i) CK repression is independent of the iron status, (ii) IRT1 and FRO2 downregulation is unchanged in a fit loss-of-function mutant, indicating that FIT does not mediate CK repression, and (iii) the iron-regulated genes AtNRAMP3 and AtNRAMP4 are not downregulated by CKs. We show that root growth-inhibitory conditions, such as abiotic stresses (mannitol, NaCl) and hormonal treatments (auxin, abscissic acid), repress the iron starvation response genes. We propose that CKs control the root iron uptake machinery through a root growth dependent pathway in order to adapt nutrient uptake to the demand of the plant. [source]


Signaling requirements and role of salicylic acid in HRT - and rrt -mediated resistance to turnip crinkle virus in Arabidopsis

THE PLANT JOURNAL, Issue 5 2004
A.C. Chandra-Shekara
Summary Inoculation of turnip crinkle virus (TCV) on the resistant Arabidopsis ecotype Di-17 elicits a hypersensitive response (HR), which is accompanied by increased expression of pathogenesis-related (PR) genes. Previous genetic analyses revealed that the HR to TCV is conferred by HRT, which encodes a coiled-coil (CC), nucleotide-binding site (NBS) and leucine-rich repeat (LRR) class resistance (R) protein. In contrast to the HR, resistance to TCV requires both HRT and a recessive allele at a second locus designated rrt. Here, we demonstrate that unlike most CC-NBS-LRR R genes, HRT/rrt -mediated resistance is dependent on EDS1 and independent of NDR1. Resistance is also independent of RAR1 and SGT1. HRT/rrt -mediated resistance is compromised in plants with reduced salicylic acid (SA) content as a consequence of mutations eds5, pad4, or sid2. By contrast, HR is not affected by mutations in eds1, eds5, pad4, sid2, ndr1, rar1, or sgt1b. Resistance to TCV is restored in both SA-deficient Di-17 plants expressing the nahG transgene and mutants containing the eds1, eds5, or sid2 mutations by exogenous application of SA or the SA analog benzo(1,2,3)thiadiazole-7-carbothioic acid (BTH). In contrast, SA/BTH treatment failed to enhance resistance in HRT pad4, Col-0, or hrt homozygous progeny of a cross between Di-17 and Col-0. Thus, HRT and PAD4 are required for SA-induced resistance. Exogenously supplied SA or high endogenous levels of SA, due to the ssi2 mutation, overcame the suppressive effects of RRT and enhanced resistance to TCV, provided the HRT allele was present. High levels of SA upregulate HRT expression via a PAD4 -dependent pathway. As Col-0 transgenic lines expressing high levels of HRT were resistant to TCV, but lines expressing moderate to low levels of HRT were not, we conclude that SA enhances resistance in the RRT background by upregulating HRT expression. These data suggest that the HRT-TCV interaction is unable to generate sufficient amounts of SA required for a stable resistance phenotype, and the presence of rrt possibly corrects this deficiency. [source]


Downmodulation of Bcl-2 sensitizes metastatic LNCaP-LN3 cells to undergo apoptosis via the intrinsic pathway

THE PROSTATE, Issue 6 2010
Renduo Song
Abstract BACKGROUND We explored the mechanisms of apoptosis after Bcl-2 protein downmodulation in metastatic LNCaP-LN3 cells (LN3). METHODS LNCaP, LNCaP-Pro5 (Pro5) and LN3 cells were cultured in 5% charcoal-stripped serum (CSS) or in R1881 (synthetic androgen) and bicalutamide (synthetic anti-androgen) and growth inhibition was assessed. Expression levels of androgen receptor (AR) and Bcl-2 were determined. LN3 cells were transfected with small interfering RNA Bcl-2 (siRNA Bcl-2) or control siRNA oligonucleotides. Rates of apoptosis and proliferation were obtained. Cytochrome c localization in treated and control cells was assessed,±,cyclosporine A (CsA). Caspases 9, 3, and poly (ADP-ribose) polymerase cleavage (PARP) were measured upon downmodulation of Bcl-2; and cell growth inhibition in vitro after Bcl-2 modulation combined with docetaxel chemotherapy was determined. RESULTS LN3 cells maintained growth under castrate conditions in vitro. AR protein amplification did not explain castrate-resistant LN3 cell growth. Bcl-2 protein levels in LN3 cells were significantly higher than in Pro5 cells, and were effectively downmodulated by siRNA Bcl-2. Subsequently increased apoptosis and decreased proliferation mediated by cytochrome c was noted and this was reversed by CsA. siRNA Bcl-2-transfected LN3 cells exhibited elevated levels of caspases 9, 3, and PARP cleavage. Exposure of LN3 cells to docetaxel led to increased apoptosis, and simultaneous downmodulation of Bcl-2 substantially enhanced this effect. CONCLUSIONS Downmodulation of Bcl-2 in metastatic castrate-resistant LNCaP-LN3 cells led to apoptosis via a cytochrome c -dependent pathway that was enhanced with docetaxel treatment. Prostate 70: 571,583, 2010. © 2009 Wiley-Liss, Inc. [source]


Glutamate receptors on myelinated spinal cord axons: II.

ANNALS OF NEUROLOGY, Issue 2 2009
GluR5 receptors
Objective Glutamate receptors, which play a major role in the physiology and pathology of central nervous system gray matter, are also involved in the pathophysiology of white matter. However, the cellular and molecular mechanisms responsible for excitotoxic damage to white matter elements are not fully understood. We explored the roles of AMPA and GluR5 kainate receptors in axonal Ca2+ deregulation. Methods Dorsal column axons were loaded with a Ca2+ indicator and imaged in vitro using confocal microscopy. Results Both AMPA and a GluR5 kainate receptor agonist increased intraaxonal Ca2+ in myelinated rat dorsal column fibers. These responses were inhibited by selective antagonists of these receptors. The GluR5-mediated Ca2+ increase was mediated by both canonical (ie, ionotropic) and noncanonical (metabotropic) signaling, dependent on a pertussis toxin,sensitive G protein/phospholipase C,dependent pathway, promoting Ca2+ release from inositol triphosphate,dependent stores. In addition, the GluR5 response was reduced by intraaxonal NO scavengers. In contrast, GluR4 AMPA receptors operated via Ca2+ -induced Ca2+ release, dependent on ryanodine receptors, and unaffected by NO scavengers. Neither pathway depended on L-type Ca2+ channels, in contrast with GluR6 kainate receptor action.1 Immunohistochemistry confirmed the presence of GluR4 and GluR5 clustered at the surface of myelinated axons; GluR5 coimmunoprecipitated with nNOS and often colocalized with neuronal nitric oxide synthase clusters on the internodal axon. Interpretation Central myelinated axons express functional AMPA and GluR5 kainate receptors, and can directly respond to glutamate receptor agonists. These glutamate receptor,dependent signaling pathways promote an increase in intraaxonal Ca2+ levels potentially contributing to axonal degeneration. Ann Neurol 2009 [source]


Valproate activates the Notch3/c-FLIP signaling cascade: a strategy to attenuate white matter hyperintensities in bipolar disorder in late life?

BIPOLAR DISORDERS, Issue 3 2009
Peixiong Yuan
Objectives:, Increased prevalence of deep white matter hyperintensities (DWMHs) has been consistently observed in patients with geriatric depression and bipolar disorder. DMWHs are associated with chronicity, disability, and poor quality of life. They are thought to be ischemic in their etiology and may be related to the underlying pathophysiology of mood disorders in the elderly. Notably, these lesions strikingly resemble radiological findings related to the cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephelopathy (CADASIL) syndrome. CADASIL arises from mutations in Notch3, resulting in impaired signaling via cellular Fas-associated death domain-like interleukin-1-beta-converting enzyme-inhibitory protein (c-FLIP) through an extracellular signal-regulated kinase (ERK)-dependent pathway. These signaling abnormalities have been postulated to underlie the progressive degeneration of vascular smooth muscle cells (VSMC). This study investigates the possibility that the anticonvulsant valproate (VPA), which robustly activates the ERK mitogen-activated protein kinase (MAPK) cascade, may exert cytoprotective effects on VSMC through the Notch3/c-FLIP pathway. Methods:, Human VSMC were treated with therapeutic concentrations of VPA subchronically. c-FLIP was knocked down via small interfering ribonucleic acid transfection. Cell survival, apoptosis, and protein levels were measured. Results:, VPA increased c-FLIP levels dose- and time-dependently and promoted VSMC survival in response to Fas ligand-induced apoptosis in VSMC. The anti-apoptotic effect of VPA was abolished by c-FLIP knockdown. VPA also produced similar in vivo effects in rat brain. Conclusions:, These results raise the intriguing possibility that VPA may be a novel therapeutic agent for the treatment of CADASIL and related disorders. They also suggest that VPA might decrease the liability of patients with late-life mood disorders to develop DWMHs. [source]


Inhibition of caspase-dependent spontaneous apoptosis via a cAMP-protein kinase A dependent pathway in neutrophils from sickle cell disease patients

BRITISH JOURNAL OF HAEMATOLOGY, Issue 1 2007
Nicola Conran
Summary Sickle cell disease (SCD) is a chronic inflammatory condition characterized by high leucocyte counts, altered cytokine levels and endothelial cell injury. As the removal of inflammatory cells by apoptosis is fundamental for the resolution of inflammation, we aimed to determine whether the leucocyte apoptotic process is altered in SCD. Neutrophils from SCD individuals showed an inhibition of spontaneous apoptosis when cultured in vitro, in the presence of autologous serum for 20 h. Intracellular cyclic adenosine monophosphate (cAMP) levels were approximately twofold increased in SCD neutrophils; possible cAMP-upregulating factors present in SCD serum include interleukin-8, granulocyte-macrophage colony-stimulating factor and prostaglandin. Accordingly, co-incubation of SCD neutrophils with KT5720, a cAMP-dependent protein kinase (PKA) inhibitor, abrogated increased SCD neutrophil survival. Caspase-3 activity was also significantly diminished in SCD neutrophils cultured for 16 h and this activity was restored when cells were co-incubated with KT5720. BIRC2 (encoding cellular inhibitor of apoptosis protein 1, cIAP1), MCL1 and BAX expression were unaltered in SCD neutrophils; however, BIRC3 (encoding the caspase inhibitor, cIAP2), was expressed at significantly higher levels. Thus, we report an inhibition of spontaneous SCD neutrophil apoptosis that appears to be mediated by upregulated cAMP-PKA signalling and decreased caspase activity. Increased neutrophil survival may have significant consequences in SCD; contributing to leucocytosis, tissue damage and exacerbation of the chronic inflammatory state. [source]


CR229, a novel derivative of ,-carbolin-1-one, induces cell cycle arrest and apoptosis in HeLa cells via p53 activation

CANCER SCIENCE, Issue 9 2007
Min Kyoung Kim
In the course of screening for novel anticancer compounds, CR229 (6-Bromo-2,3,4,9-tetrahydro-carbolin-1-one), a novel derivative of ,-carbolin-1-one, was generated as a new scaffold candidate. For the first time, the authors demonstrate that CR229 inhibited the growth of HeLa cells by the induction of cell cycle arrest and apoptosis. Analysis of flow cytometry and western blots of HeLa cells treated with 2.5 µM CR229 revealed an appreciable cell cycle arrest in the G1, G2/M phase and apoptotic induction via the p53 -dependent pathway. Furthermore, the release of cytochrome c from mitochondria was detected using confocal microscopy in HeLa cells treated with CR229. Accordingly, these data demonstrate that the anticancer activity of CR229 is associated with: (i) the down-regulation of cyclins and cyclin-dependent kinase; (ii) the induction of p53, p21, and p16; and (iii) the activation of caspase-3. (Cancer Sci 2007; 98: 1402,1407) [source]


Human mucosa/submucosa interactions during intestinal inflammation: involvement of the enteric nervous system in interleukin-8 secretion

CELLULAR MICROBIOLOGY, Issue 12 2005
Emmanuelle Tixier
Summary Interleukin-8 (IL-8) is a key chemokine upregulated in various forms of intestinal inflammation, especially those induced by bacteria such as Clostridium difficile (C. difficile). Although interactions between different mucosal and submucosal cellular components have been reported, whether such interactions are involved in the regulation of IL-8 secretion during C. difficile infection is unknown. Moreover, whether the enteric nervous system, a major component of the submucosa, is involved in IL-8 secretion during an inflammatory challenge remains to be determined. In order to investigate mucosa/submucosa interactions that regulate IL-8 secretion, we co-cultured human intestinal mucosa and submucosa. In control condition, IL-8 secretion in co-culture was lower than the sum of the IL-8 secretion of both tissue layers cultured alone. Contrastingly, IL-8 secretion increased in co-culture after mucosal challenge with toxin B of C. difficile through an IL-1,-dependent pathway. Moreover, we observed that toxin B of C. difficile increased IL-8 immunoreactivity in submucosal enteric neurones in co-culture and in intact preparations of mucosa/submucosa, through an IL-1,-dependent pathway. IL-1, also increased IL-8 secretion and IL-8 mRNA expression in human neuronal cell lines (NT2-N and SH-SY5Y), through p38 and ERK1/2 MAP kinase-dependent pathways. Our results demonstrate that mucosa/submucosa interactions regulate IL-8 secretion during inflammatory processes in human through IL-1,-dependent pathways. Finally we observed that human submucosal neurones synthesize IL-8, whose production in neurones is induced by IL-1, via MAPK-dependent pathways. [source]


B2 kinin receptors mediate the Indian red scorpion venom-induced augmentation of visceral reflexes via the nitric oxide cyclic guanosine monophosphate pathway

ACTA PHYSIOLOGICA, Issue 4 2009
S. Kanoo
Abstract Aim:, This study was performed to delineate the kinin (receptor)-dependent pathways in the Indian red scorpion (Mesobuthus tamulus; MBT) venom-induced pulmonary oedema as well as the augmentation of cardio-pulmonary reflexes evoked by phenyldiguanide (PDG). Methods:, In urethane-anaesthetized adult rats, the effect of venom on the PDG reflex responses (blood pressure, heart rate and respiration rate) and the pulmonary water content was ascertained using various antagonists(des- Arg, B1 receptor antagonist; Hoe 140, B2 receptor antagonist; N, -nitro- l -arginine methyl ester (l -NAME), nitric oxide (NO) synthase inhibitor; methylene blue, soluble guanylate cyclase inhibitor; and glibenclamide, K+ATP channel blocker). The effect of phosphodiesterase V inhibitor (sildenafil citrate) on the reflex response and the pulmonary water content was also examined and compared with venom-induced responses. Results:, Intravenous injection of PDG (10 ,g kg,1) evoked apnoea, bradycardia and hypotension lasting >60 s. Exposure to MBT venom (100 ,g kg,1) for 30 min augmented the PDG reflex responses by two times and increased the pulmonary water content, significantly. Hoe 140 blocked the venom-induced responses (augmentation of PDG reflex and increased pulmonary water content) whereas des-Arg did not. l -NAME, methylene blue or glibenclamide also blocked the venom-induced responses. Furthermore, sildenafil citrate (that increases cGMP levels) produced augmentation of PDG reflex response and increased the pulmonary water content as seen with venom. Conclusion:, The results indicate that venom-induced responses involve B2 kinin receptors via the NO-dependent guanylate cyclase-cGMP pathway involving K+ATP channels. [source]


Significant cytotoxic activity in vitro of the EGFR tyrosine kinase inhibitor gefitinib in acute myeloblastic leukaemia

EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 5 2008
Elin Lindhagen
Abstract Objectives:, Gefitinib inhibits epidermal growth factor receptor (EGFR) signalling, but may also act by non-EGFR dependent mechanisms. We have investigated the activity of gefitinib in haematological tumour cells, in particular acute myeloblastic leukaemia (AML). Methods:, Cytotoxic activity of gefitinib, alone or in combination with standard anti-leukaemic drugs, was assessed by the short-term fluorometric microculture cytotoxicity assay in tumour cells from 117 patients representing five haematological and five non-haematological malignancies. In AML, the EGFR status was analysed by immunochemistry. Gefitinib-induced apoptosis was investigated in a subset of AML samples, as well as in the leukaemia cell line MV-4-11, using a multiparametric high content screening assay. To confirm activation of caspase-3 in cells treated with gefitinib, a blocking test was carried out in which MV4-11 cells were pretreated with the specific caspase inhibitor DEVD-FMK. Results:, Gefitinib showed highest cytotoxic activity in AML (n = 19) with many samples being sensitive at concentrations achievable in clinical practice (<10 ,M), and no difference between previously untreated and relapsed patients. No correlation between the activity of gefitinib and standard antileukaemic drugs (cytarabine, doxorubicin, etoposide) was observed. Combining gefitinib with these drugs resulted in mainly additive or synergistic (etoposide) effects, with no evidence of sequence dependency. The AML cells did not express the EGFR. Gefitinib induced apoptosis, which was at least partly mediated by activation of the caspase-3 pathway. Conclusion:,In vitro, gefitinib has significant cytotoxic activity in AML by inducing apoptosis through non-EGFR dependent pathways. [source]


Osteoblast Deletion of Exon 3 of the Androgen Receptor Gene Results in Trabecular Bone Loss in Adult Male Mice,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 3 2007
Amanda J Notini
Abstract The mechanism of androgen action on bone was studied in male mice with the AR deleted in mature osteoblasts. These mice had decreased trabecular bone volume associated with a decrease in trabecular number, suggesting that androgens may act directly on osteoblasts to maintain trabecular bone. Introduction: Androgens modulate bone cell activity and are important for the maintenance of bone mass. However, the mechanisms by which they exert these actions on bone remain poorly defined. The aim of this study was to investigate the role of androgens acting through the classical androgen receptor (AR) signaling pathways (i.e., DNA-binding dependent pathways) in osteoblasts using male mice in which exon 3 of the AR gene was deleted specifically in mature osteoblasts. Materials and Methods: Mice with a floxed exon 3 of the AR gene were bred with Col 2.3-cre transgenic mice, in which Cre recombinase is expressed in mineralizing osteoblasts. The skeletal phenotype of mutant mice was assessed by histomorphometry and quantitative ,CT at 6, 12, and 32 weeks of age (n = 8 per group). Wildtype, hemizygous exon 3 floxed and hemizygous Col 2.3-cre male littermates were used as controls. Data were analyzed by one-way ANOVA and Tukey's posthoc test. Results: ,CT analysis of the fifth lumbar vertebral body showed that these mice had reduced trabecular bone volume (p < 0.05) at 32 weeks of age compared with controls. This was associated with a decrease in trabecular number (p < 0.01) at 12 and 32 weeks of age, suggesting increased bone resorption. These effects were accompanied by a reduction in connectivity density (p < 0.01) and an increase in trabecular separation (p < 0.01). A similar pattern of trabecular bone loss was observed in the distal femoral metaphysis at 32 weeks of age. Conclusions: These findings show that inactivation of the DNA binding,dependent functions of the AR, specifically in mature osteoblasts in male mice, results in increased bone resorption and decreased structural integrity of the bone, leading to a reduction in trabecular bone volume at 32 weeks of age. These data provide evidence of a role for androgens in the maintenance of trabecular bone volume directly through DNA binding,dependent actions of the AR in mature osteoblasts. [source]


Formation pathways of DMSO from DMS-OH in the presence of O2 and NOx: A theoretical study

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 2 2009
Juan M. Ramírez-Anguita
Abstract The relative importance of the reaction pathways and thus the product yields in the dimethyl sulfide (DMS) degradation scheme initiated by the hydroxyl (OH) radical has been said to be influenced by the content of nitrogen oxides (NOx) in chamber experiments. In this study, ab initio and density functional electronic structure calculations of all the possible reaction pathways corresponding to the reaction process initiated by DMS-OH + oxygen (O2), leading to the formation of the dimethyl sulfoxide (DMSO) product in the presence of NOx (NO and NO2), are carried out for the first time. The results for the different pathways are compared with the objective of inferring their kinetic relevance in the laboratory experiments that measure DMSO formation yields. Our theoretical results clearly show the existence of NOx -dependent pathways leading to the formation of DMSO in addition to O2 -dependent channels. So then, NOx -containing conditions would have to modify the relative importance of the addition channel in the DMS oxidation process. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2009 [source]


Angiotensin II promotes the phosphorylation of cyclic AMP-responsive element binding protein (CREB) at Ser133 through an ERK1/2-dependent mechanism

JOURNAL OF NEUROCHEMISTRY, Issue 6 2001
Martín Cammarota
In cells from the adrenal medulla, angiotensin II (AII) regulates both the activity and mRNA levels of catecholamine biosynthetic enzymes whose expression is thought to be under the control of cAMP-responsive element (CRE) binding protein (CREB). In this study, we evaluated the effect of AII stimulation on CREB phosphorylation at Ser133 (pCREB) in bovine adrenal chromaffin cells (BACC). We found that AII produces a rapid and AII type-1 receptor (AT1)-dependent increase in pCREB levels, which is blocked by the MEK1/2 inhibitor U0126 but not by H-89, SB203580 or KN-93, suggesting that it is mediated by the extracellular-regulated protein kinases 1 and 2 (ERK1/2) and not by cAMP-dependent protein kinase (PKA), p38 mitogen-activated protein kinase (p38MAPK) or Ca2+/calmodulin-dependent protein kinases (CaMKs) dependent pathways. Gel-shift experiments showed that the increase in pCREB levels is accompanied by an ERK1/2-dependent upregulation of CRE-binding activity. We also found that AII promotes a rapid and reversible increase in the activity of the non-receptor tyrosine kinase Src and that the inhibition of this enzyme completely blocks the AII-induced phosphorylation of ERK1/2, the CREB kinase p90RSK and CREB. Our data support the hypothesis that in BACC, AII upregulates CREB functionality through a mechanism that requires Src-mediated activation of ERK 1/2 and p90RSK. [source]


Expression of the melatonin receptor (MT) 1 in benign and malignant human bone tumors

JOURNAL OF PINEAL RESEARCH, Issue 2 2007
Cyril D. Toma
Abstract:, The beneficial effects of melatonin on bone homeostasis have been shown in various diseases. As this indoleamine causes dose-dependent modulation of bone-forming osteoblast and bone-resorbing osteoclast activities by receptor-independent and -dependent pathways, we investigated the expression of G-protein-coupled melatonin receptors (MTs) in malignant and non-malignant human bone lesions. By TaqMan polymerase chain reaction (PCR), we analyzed 30 specimens from osteosarcoma and 11 from benign bone tumors for MT1-mRNA expression. Furthermore, we determined mRNA expression levels of the osteoclast activity-stimulating receptor activator of nuclear factor- , B ligand (RANKL) and its counterpart osteoprotegerin (OPG). Although mean MT1-mRNA levels were similar (P = 0.596) in malignant (4.39 ± 4.98-fold) and benign samples (4.64 ± 6.81-fold), the highest MT1-mRNA levels (up to 27-fold) were observed in individual osteosarcomas, particularly, in two specimens of patients with local recurrence of the tumor. Moreover, mean RANKL- and OPG-mRNA levels were similar in malignant and benign specimens (RANKL: 7.38 ± 9.61-fold versus 3.57 ± 3.11-fold, P = 0.207; OPG: 23.45 ± 32.76 versus 8.07 ± 7.23-fold, P = 0.133). Again, highest RANKL- and OPG-mRNA levels (up to 41- and 160-fold, respectively) were observed in individual osteosarcomas. Expression of MT1-mRNA was confirmed in two human osteosarcoma cell lines (HOS, MG63). High expression levels of MT1-mRNA together with low OPG-mRNA were found in both osteosarcoma cell lines, while in normal human osteoblasts and bone marrow stromal cells, high OPG-mRNA levels were associated with low MT1-mRNA levels. These data on the abundant expression of MT1-mRNA in human bone tumors and osteosarcoma cells lines suggest an important role for MT1 in bone pathology. [source]


RNase R affects gene expression in stationary phase: regulation of ompA

MOLECULAR MICROBIOLOGY, Issue 1 2006
José Marques Andrade
Summary In nature, bacteria remain mostly in the stationary phase of the life cycle. Although mRNA is a major determinant of gene expression, little is known about mRNA decay in the stationary phase. The results presented herein demonstrate that RNase R is induced in stationary phase and is involved in the post-transcriptional regulation of ompA mRNA. This work is the first report of RNase R activity on a full length mRNA. In the absence of RNase R in a single rnr mutant, higher levels of ompA mRNA are found as a consequence of the stabilization of ompA full transcript. This effect is growth-phase-specific and not a growth-rate-dependent event. These higher levels of ompA mRNA were correlated with increases in the amounts of OmpA protein. We have also analysed the role of other factors that could affect ompA mRNA stability in stationary phase. RNase E was found to have the most important role, followed by polyadenylation. PNPase also affected the decay of the ompA transcript but RNase II did not seem to contribute much to this degradation process. The participation of RNase R in poly(A)-dependent pathways of decay in stationary phase of growth is discussed. The results show that RNase R can be a modulator of gene expression in stationary phase cells. [source]


Inhibition of interferon-,-induced nitric oxide production in endotoxin-activated macrophages by cytolethal distending toxin

MOLECULAR ORAL MICROBIOLOGY, Issue 5 2008
K. P. S. Fernandes
Introduction:, Cytolethal distending toxin (CDT) is a DNA-targeting agent produced by certain pathogenic gram-negative bacteria such as the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. CDT targets lymphocytes and other cells causing cell cycle arrest and apoptosis, impairing the host immune response and contributing to the persistence of infections caused by this microorganism. In this study we explored the effects of CDT on the innate immune response, by investigating how it affects production of nitric oxide (NO) by macrophages. Methods:, Murine peritoneal macrophages were stimulated with Escherichia coli sonicates and NO production was measured in the presence or not of active CDT. Results:, We observed that CDT promptly and significantly inhibited NO production by inducible nitric oxide synthase (iNOS) in a dose-dependent manner. This inhibition is directed towards interferon-,-dependent pathways and is not mediated by either interleukin-4 or interleukin-10. Conclusion:, This mechanism may constitute an important aspect of the immunosuppression mediated by CDT and may have potential clinical implications in A. actinomycetemcomitans infections. [source]