Home About us Contact | |||
Dependent Manner (dependent + manner)
Kinds of Dependent Manner Selected AbstractsRole of the Na+/Ca2+ exchanger in calcium homeostasis and human sperm motility regulationCYTOSKELETON, Issue 2 2006Zoltán Krasznai Abstract A number of cell functions, such as flagellar beating, swimming velocity, acrosome reaction, etc., are triggered by a Ca2+ influx across the cell membrane. For appropriate physiological functions, the motile human sperm maintains the intracellular free calcium concentration ([Ca2+]i) at a submicromolar level. The objective of this study was to determine the role of the Na+/Ca2+ exchanger (NCX) in the maintenance of [Ca2+]i in human spermatozoa. Spermatozoa maintained in extracellular medium containing ,1 ,M Ca2+ exhibited motility similar to that of the control. In addition to several calcium transport mechanisms described earlier, we provide evidence that the NCX plays a crucial role in the maintenance of [Ca2+]i. Three chemically unrelated inhibitors of the NCX (bepridil, DCB (3,,4, -dichlorobenzamil hydrochloride), and KB-R7943) all blocked human sperm motility in a dose and incubation time dependent manner. The IC50 values for bepridil, DCB, and KB-R7943 were 16.2, 9.8, and 5.3 ,M, respectively. The treatment with the above-mentioned blockers resulted in an elevated [Ca2+]i and a decreased [Na+]i. The store-operated calcium channel (SOCC) inhibitor SKF 96365 also blocked the sperm motility (IC50 = 2.44 ,M). The presence of the NCX antigen in the human spermatozoa was proven by flow cytometry, confocal laser scanning microscopy, and immunoblotting techniques. Calcium homeostasis of human spermatozoa is maintained by several transport proteins among which the SOCC and the NCX may play a major role. Cell Motil. Cytoskeleton 2006. © 2005 Wiley-Liss, Inc. [source] Conserved RARE localization in amphioxus Hox clusters and implications for Hox code evolution in the vertebrate neural crestDEVELOPMENTAL DYNAMICS, Issue 6 2006Hiroshi Wada Abstract The Hox code in the neural crest cells plays an important role in the development of the complex craniofacial structures that are characteristic of vertebrates. Previously, 3, AmphiHox1 flanking region has been shown to drive gene expression in neural tubes and neural crest cells in a retinoic acid (RA)-dependent manner. In the present study, we found that the DR5-type RA response elements located at the 3, AmphiHox1 flanking region of Branchiostoma floridae are necessary and sufficient to express reporter genes in both the neural tube and neural crest cells of chick embryos, specifically at the post-otic level. The DR5 at the 3, flanking region of chick Hoxb1 is also capable of driving the same expression in chick embryos. We found that AmphiHox3 possesses a DR5-type RARE in its 5, flanking region, and this drives an expression pattern similar to the RARE element found in the 3, flanking region of AmphiHox1. Therefore, the location of these DR5-type RAREs is conserved in amphioxus and vertebrate Hox clusters. Our findings demonstrate that conserved RAREs mediate RA-dependent regulation of Hox genes in amphioxus and vertebrates, and in vertebrates this drives expression of Hox genes in both neural crest and neural tube. This suggests that Hox expression in vertebrate neural crest cells has evolved via the co-option of a pre-existing regulatory pathway that primitively regulated neural tube (and possibly epidermal) Hox expression. Developmental Dynamics 235:1522,1531, 2006. © 2006 Wiley-Liss, Inc. [source] Mechanism of DNA damage by cadmium and interplay of antioxidant enzymes and agentsENVIRONMENTAL TOXICOLOGY, Issue 2 2007Veera L. D. Badisa Abstract Cadmium is an environmental toxicant, which causes cancer in different organs. It was found that it damages DNA in the various tissues and cultured cell lines. To investigate the mechanism of DNA damage, we have studied the effect of cadmium-induced DNA damage in plasmid pBR322 DNA, and the possible ameliorative effects of antioxidative agents under in vitro conditions. It was observed that cadmium alone did not cause DNA damage. However, it caused DNA damage in the presence of hydrogen peroxide, in a dose dependent manner, because of production of hydroxyl radicals. Findings from this study show the conversion of covalently closed circular double-stranded pBR 322 DNA to the open circular and linear forms of DNA when treated with 10 ,M cadmium and various concentrations of H2O2. The conversion was due to nicking in DNA strands. The observed rate of DNA strand breakage was dependent on H2O2 concentration, temperature, and time. Metallothionein I failed to prevent cadmium-induced DNA nicking in the presence of H2O2. Of the two antioxidant enzymes (catalase and superoxide dismutase) studied, only catalase conferred significant (50,60%) protection. EDTA and DMSO exhibited protection similar to catalase, while mannitol showed only about 20% protection against DNA damage. Ethyl alcohol failed to ameliorate cadmium-induced DNA strands break. From this study, it is plausible to infer that cadmium in the presence of hydrogen peroxide causes DNA damage probably by the formation of hydroxyl ions. These results may indicate that cadmium in vivo could play a major role in the DNA damage induced by oxidative stress. © 2007 Wiley Periodicals, Inc. Environ Toxicol 22: 144,151, 2007. [source] Electroconvulsive seizure thresholds and kindling acquisition rates are altered in mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsionsEPILEPSIA, Issue 7 2009James F. Otto Summary Purpose:, Benign familial neonatal convulsions (BFNC) is caused by mutations in the KCNQ2 and KCNQ3 genes, which encode subunits of the M-type potassium channel. The purpose of this study was to examine the effects of orthologous BFNC-causing mutations on seizure thresholds and the acquisition of corneal kindling in mice with heterozygous expression of the mutations. Methods:, The effects of the Kcnq2 gene A306T mutation and the Kcnq3 gene G311V mutation were determined for minimal clonic, minimal tonic hindlimb extension, and partial psychomotor seizures. The rate of corneal kindling acquisition was also determined for Kcnq2 A306T and Kcnq3 G311V mice. Results:, Seizure thresholds were significantly altered relative to wild-type animals in the minimal clonic, minimal tonic hindlimb extension, and partial psychomotor seizure models. Differences in seizure threshold were found to be dependent on the mutation expressed, the seizure testing paradigm, the genetic background strain, and the gender of the animal. Mutations in Kcnq2 and Kcnq3 were associated with an increased rate of corneal kindling. In the Kcnq2 A306T mice, an increased incidence of death occurred during and immediately following the conclusion of the kindling acquisition period. Conclusions:, These results suggest that genetic alterations in the subunits that underlie the M-current and cause BFNC alter seizure susceptibility in a sex-, mouse strain-, and seizure-test dependent manner. Although the heterozygous mice do not appear to have spontaneous seizures, the increased seizure susceptibility and incidence of death during and after kindling suggests that these mutations lead to altered excitability in these animals. [source] Effects of a MAPK p38 inhibitor on lung function and airway inflammation in equine recurrent airway obstructionEQUINE VETERINARY JOURNAL, Issue 6 2008J.-P. LAVOIE Summary Reasons for performing study: It has been suggested that many of the beneficial effects of corticosteroids are mediated through mitogen-activated protein kinase (MAPK) p38 inhibition. Objective: To investigate the efficacy of the MAPK p38 inhibitor compound MRL-EQ1 to either prevent (Phase 1) or treat (Phase 2) recurrent airway obstruction (RAO) in horses. Methods: MRL-EQ1 was administered i.v. at a dosage of 0.75-1.5 mg/kg bwt q. 12 h. In Phase 1, susceptible horses in clinical remission were divided into 2 groups (n = 5/group), based on historical values of respiratory mechanics. All horses were entered in the study in pairs (one control, one treated horse) and exposed to the same environmental challenge (stabling, mouldy hay and dusty conditions). The treatment group received MRL-EQ1 for 14 days while the control horses were untreated during the same period. In Phase 2, affected horses were ranked by severity of respiratory dysfunction and split randomly into either dexamethasone or MRL-EQ1 treatment groups (n = 5/group). Bronchoalveolar lavage fluid, respiratory mechanic measurements, MRL-EQ1 plasma concentration and tumour necrosis factor (TNF) whole blood activity were evaluated sequentially. Results: In Phase 1, MRL-EQ1 did not prevent the occurrence of clinical signs and pulmonary inflammation. However, treatment was associated with a reduction in severity and a delay in the onset of signs and a reduction in pulmonary neutrophilia. In Phase 2, plasma concentrations achieved resulted in ex vivo suppression of lipopolysaccharide-induced TNF production in equine blood. MRL-EQ1 did not improve airway inflammation or lung function and was associated in a dose dependent manner with behavioural (depression, excitability) and blood changes (neutrophilia, increased serum muscle enzyme concentrations). Conclusions: Inhibition of p38 in the horse was partially effective in reducing clinical signs and airway inflammation when administered prior to, but not during clinical exacerbation in RAO. Potential relevance: Inhibitors of p38 MAPK with a better toxicity profile may be effective in the prevention or treatment of RAO. [source] Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 7 2005Malgorzata Kisielow Abstract Lymphocyte activation gene 3 (LAG-3/CD223) is a CD4 homolog known to be selectively expressed in activated T and NK cells. It is thought to have a negative regulatory function in T cells. With the help of new monoclonal antibodies against mouse LAG-3, we show that LAG-3 surface expression is not limited to activated T and NK cells but is also found on activated B cells. Induction of B cell surface expression is T cell dependent and mediated by a soluble factor. The majority of LAG-3 on B cell surface is endogenously produced, even though soluble LAG-3 is present in the culture supernatants and can be passively absorbed. As B cells express LAG-3 in a T cell dependent manner and not when activated by Toll-like-receptor agonists alone, we propose LAG-3 as a new marker of T cell induced B cell activation. [source] Comparative studies on the functional roles of N- and C-terminal regions of molluskan and vertebrate troponin-IFEBS JOURNAL, Issue 17 2005Hiroyuki Tanaka Vertebrate troponin regulates muscle contraction through alternative binding of the C-terminal region of the inhibitory subunit, troponin-I (TnI), to actin or troponin-C (TnC) in a Ca2+ -dependent manner. To elucidate the molecular mechanisms of this regulation by molluskan troponin, we compared the functional properties of the recombinant fragments of Akazara scallop TnI and rabbit fast skeletal TnI. The C-terminal fragment of Akazara scallop TnI (ATnI232,292), which contains the inhibitory region (residues 104,115 of rabbit TnI) and the regulatory TnC-binding site (residues 116,131), bound actin-tropomyosin and inhibited actomyosin-tropomyosin Mg-ATPase. However, it did not interact with TnC, even in the presence of Ca2+. These results indicated that the mechanism involved in the alternative binding of this region was not observed in molluskan troponin. On the other hand, ATnI130,252, which contains the structural TnC-binding site (residues 1,30 of rabbit TnI) and the inhibitory region, bound strongly to both actin and TnC. Moreover, the ternary complex consisting of this fragment, troponin-T, and TnC activated the ATPase in a Ca2+ -dependent manner almost as effectively as intact Akazara scallop troponin. Therefore, Akazara scallop troponin regulates the contraction through the activating mechanisms that involve the region spanning from the structural TnC-binding site to the inhibitory region of TnI. Together with the observation that corresponding rabbit TnI-fragment (RTnI1,116) shows similar activating effects, these findings suggest the importance of the TnI N-terminal region not only for maintaining the structural integrity of troponin complex but also for Ca2+ -dependent activation. [source] Homo-oligomer formation by basigin, an immunoglobulin superfamily member, via its N-terminal immunoglobulin domainFEBS JOURNAL, Issue 14 2000Seiya Yoshida Basigin (Bsg) is a highly glycosylated transmembrane protein with two immunoglobulin (Ig)-like domains. A number of studies, including gene targeting, have demonstrated that Bsg plays pivotal roles in spermatogenesis, implantation, neural network formation and tumor progression. In the present study, to understand the mechanism of action of Bsg, we determined its expression status on the plasma membrane. Cotransfection of Bsg expression vectors with two different tags clarified that Bsg forms homo-oligomers in a cis -dependent manner on the plasma membrane. If the disulfide bond of the more N-terminally located Ig-like domain was destroyed by mutations, Bsg could not form oligomers. In contrast, the mutations of the C-terminal Ig-like domain or N-glycosylation sites did not affect the association. The association of mouse and human Bsgs, which exhibit high homology in the transmembrane and intracellular domains but low homology in the extracellular domain, was very weak as compared with that within the same species, suggesting the importance of the extracellular domain in the association. If the extracellular domain of the human Ret protein was replaced with the N-terminal Ig-like domain of Bsg, the resulting chimera protein was associated with intact wild-type Bsg, but not if the C-terminal Ig-like domain, instead of the N-terminal one, of Bsg was used. No oligomer formation took place between the intact wild-type Ret and Bsg proteins. In conclusion, these data indicate that the N-terminal Ig-like domain is necessary and sufficient for oligomer formation by Bsg on the plasma membrane. [source] The iron dependent regulatory protein IdeR (DtxR) of Rhodococcus equiFEMS MICROBIOLOGY LETTERS, Issue 1 2000Clara A. Boland Abstract This paper reports the presence of an ideR gene, which encodes an iron-dependent regulatory protein, in Rhodococcus erythropolis and in the intracellular pathogen Rhodococcus equi. The ideR gene of the latter encoded a protein of 230 amino acids with a molecular mass of 25,619. The ,-helices forming the helix-turn-helix motif of the R. equi protein were identical to those of the DtxR protein of Corynebacterium diphtheriae, which is an IdeR homologue. This indicates that the two proteins bind to the same DNA binding site. This was confirmed following expression of IdeR in Escherichia coli, which showed that the IdeR protein could repress transcription of the tox promoter of C. diphtheriae in an iron dependent manner. An open reading frame specifying a 283-amino acid polypeptide similar to galE encoding UDP-galactose 4-epimerase was present downstream of the ideR gene. [source] Identification of a novel BTB-zinc finger transcriptional repressor, CIBZ, that interacts with CtBP corepressorGENES TO CELLS, Issue 9 2005Nobuhiro Sasai The transcriptional corepressor C-terminal binding protein (CtBP) is thought to be involved in development and oncogenesis, but the regulation of its corepressor activity is largely unknown. We show here that a novel BTB-zinc finger protein, CIBZ (CtBP-interacting BTB zinc finger protein; a mouse ortholog of rat ZENON that was recently identified as an e-box/dyad binding protein), redistributes CtBP to pericentromeric foci from a diffuse nuclear localization in interphase cells. CIBZ physically associates with CtBP via a conserved CtBP binding motif, PLDLR. When heterologously targeted to DNA, CIBZ represses transcription via two independent repression domains, an N-terminal BTB domain and a PLDLR motif-containing RD2 region, in a histone deacetylase-independent and -dependent manner, respectively. Mutation in the PLDLR motif abolishes the CIBZ-CtBP interaction and transcriptional repression activity of RD2, but does not affect the repression activity of the BTB domain. Furthermore, this PLDLR-mutated CIBZ cannot target CtBP to pericentromeric foci, although it is localized to the pericentromeric foci itself. These results suggest that at least one repression mechanism mediated by CIBZ is recruitment of the CtBP/HDAC complex to pericentromeric foci, and that CIBZ may regulate pericentromeric targeting of CtBP. [source] Mammalian septin Sept2 modulates the activity of GLAST, a glutamate transporter in astrocytesGENES TO CELLS, Issue 1 2004Nagatoki Kinoshita Sept2 is a member of the septin family of GTPases. Septins form filaments in a GTP-form dependent manner, and are involved in cytokinesis from yeast to mammals; however, some mammalian septins, including Sept2, are expressed in the brain, a tissue in which almost all the cells are postmitotic. Recently, some functions of mammalian septin other than cytokinesis such as vesicle transport have been reported. However, mammalian septin's physiological functions are still unclear. The present study revealed that Sept2 co-localizes with the astrocyte glutamate transporter GLAST in the Bergmann glial processes facing axons and synapses. Biochemical analyses demonstrated that Sept2 bound directly to the carboxy-terminal region of GLAST in a GDP-form dependent manner. Expression of constitutive GDP-form Sept2 mutant reduced the glutamate uptake activity of GLAST via internalization of GLAST from cell surface. Thus Sept2 may regulate GLAST-mediated glutamate uptake by astrocytes, which is important for appropriate transmitter signalling in the cerebellum. [source] Cyclin G1 associates with MDM2 and regulates accumulation and degradation of p53 proteinGENES TO CELLS, Issue 8 2002Shinya H. Kimura Background: Cyclin G1 is a transcriptional target of p53 and is induced by DNA damage in a p53 dependent manner. Analysis of cyclin G1 disrupted mice demonstrated that cyclin G1 is involved in many of the functions regulated by p53 such as apoptosis, growth control and check point regulation in response to DNA damage. The results suggest that the main role of cyclin G1 is to mediate or regulate the function of p53. Results: Western blot analysis revealed that the accumulation of p53 protein during the initial 24 h period following DNA damage is reduced in cyclin G1,/, cells compared to wild-type cells. This decrease in p53 accumulation could be recovered by introducing a cDNA expressing cyclin G1. Cyclin G1 interacted directly with MDM2 and promoted the formation of the ARF/MDM2 complex within the initial 24 h period following DNA damage. Furthermore, 48 h after irradiation, accumulation of p53 protein was enhanced in cyclin G1,/, cells compared to wild-type cells. In contrast, in 48 h postirradiated wild-type cells, the cyclin G1-MDM2 complex was found not to be associated with ARF but with the B,, subunit of protein phosphatase A. Conclusion: These results suggest that cyclin G1 stabilizes and promotes the degradation of p53 protein by associating, respectively, with MDM2 complexes containing ARF and PP2A. [source] Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis,HEPATOLOGY, Issue 1 2009Karlin Raja Karlmark In addition to liver-resident Kupffer cells, infiltrating immune cells have recently been linked to the development of liver fibrosis. Blood monocytes are circulating precursors of tissue macrophages and can be divided into two functionally distinct subpopulations in mice: Gr1hi (Ly6Chi) and Gr1lo (Ly6Clo) monocytes. The role of these monocyte subsets in hepatic fibrosis and the mechanisms of their differential recruitment into the injured liver are unknown. We therefore characterized subpopulations of infiltrating monocytes in acute and chronic carbon tetrachloride (CCl4)-induced liver injury in mice using flow cytometry and immunohistochemistry. Inflammatory Gr1hi but not Gr1lo monocytes are massively recruited into the liver upon toxic injury constituting an up to 10-fold increase in CD11b+F4/80+ intrahepatic macrophages. Comparing wild-type with C-C chemokine receptor (CCR2)-deficient and CCR2/CCR6,deficient mice revealed that CCR2 critically controls intrahepatic Gr1hi monocyte accumulation by mediating their egress from bone marrow. During chronic liver damage, intrahepatic CD11b+F4/80+Gr1+ monocyte-derived cells differentiate preferentially into inducible nitric oxide synthase,producing macrophages exerting proinflammatory and profibrogenic actions, such as promoting hepatic stellate cell (HSC) activation, T helper 1,T cell differentiation and transforming growth factor , (TGF-,) release. Impaired monocyte subset recruitment in Ccr2,/, and Ccr2,/,Ccr6,/, mice results in reduced HSC activation and diminished liver fibrosis. Moreover, adoptively transferred Gr1hi monocytes traffic into the injured liver and promote fibrosis progression in wild-type and Ccr2,/,Ccr6,/, mice, which are otherwise protected from hepatic fibrosis. Intrahepatic CD11b+F4/80+Gr1+ monocyte-derived macrophages purified from CCl4 -treated animals, but not naďve bone marrow monocytes or control lymphocytes, directly activate HSCs in a TGF-,,dependent manner in vitro. Conclusion: Inflammatory Gr1+ monocytes, recruited into the injured liver via CCR2-dependent bone marrow egress, promote the progression of liver fibrosis. Thus, they may represent an interesting novel target for antifibrotic strategies. (HEPATOLOGY 2009;50:261,274.) [source] Impaired liver regeneration and increased oval cell numbers following T cell,mediated hepatitis,HEPATOLOGY, Issue 1 2007Ian N. Hines The regeneration of liver tissue following transplantation is often complicated by inflammation and tissue damage induced by a number of factors, including ischemia and reperfusion injury and immune reactions to the donor tissue. The purpose of the current study is to characterize the effects of T cell,mediated hepatitis induced by concanavalin A (ConA) on the regenerative response in vivo. Liver regeneration following a partial (70%) hepatectomy (pHx) was associated with elevations in serum enzymes and the induction of key cell cycle proteins (cyclin D, cyclin E, and Stat3) and hepatocyte proliferation. The induction of T cell,mediated hepatitis 4 days before pHx increased serum enzymes 48 hours after pHx, reduced early cyclin D expression and Stat3 activation, and suppressed hepatocyte proliferation. This inhibition of proliferation was also associated with increased expression of p21, the activation of Smad2, the induction of transforming growth factor beta and interferon gamma expression, and reduced hepatic interleukin 6 production. Moreover, the ConA pretreatment increased the numbers of separate oval cell-like CD117+ cells and hematopoietic-like Sca-1+ cell populations 48 hours following pHx. The depletion of natural killer (NK) cells, an important component of the innate immune response, did not affect liver injury or ConA-induced impairment of hepatocyte proliferation but did increase the numbers of both CD117-positive and Sca-1,positive cell populations. Finally, splenocytes isolated from ConA-pretreated mice exerted cytotoxicity toward autologous bone marrow cells in an NK cell,dependent manner. Conclusion: T cell,mediated hepatitis alters early cytokine responses, reduces hepatocellular regeneration, and induces NK cell,sensitive oval cell and hematopoietic-like cell expansion following pHx. (HEPATOLOGY 2007;46:229,241.) [source] Emodin reverses CCl4 induced hepatic cytochrome P450 (CYP) enzymatic and ultrastructural changes: The in vivo evidenceHEPATOLOGY RESEARCH, Issue 3 2009Monika Bhadauria Aim:, The curative effect of emodin (1,3,8-trihydroxy-6-methyl anthraquinone), an active compound of the plant species Ventilago maderaspatana Gaertn, was evaluated against carbon tetrachloride (CCl4) induced hepatic cytochrome P450 (CYP) enzymatic and ultrastructural alterations in rats. Methods:, Female rats were administered CCl4 (1.5 mL/kg, ip) followed by varying doses of emodin (20, 30 and 40 mg/kg, oral po) after 24 h of CCl4 administration. Animals were euthanized after 24 h of last administration to determine liver function tests in serum, hepatic light microscopic and ultrastructural changes, activity of CYP enzymes, microsomal lipid peroxidation and protein contents, hexobarbitone induced sleep time and bromosulphalein retention. Results:, The CCl4 induced-toxic effects were observed with sharp elevation in the release of serum transaminases, alkaline phosphatase, lactate dehydrogenase and ,-glutamyl transpeptidase. An initial study for an optimum dose of emodin among different dose levels revealed that a 30 mg/kg dose was effective in restoring all the enzymatic variables and liver histoarchitecture in a dose dependent manner. Exposure to CCl4 diminished the activities of CYP enzymes (i.e. aniline hydroxylase and amidopyrine-N-demethylase and microsomal protein contents with concomitant increase in microsomal lipid peroxidation). Emodin at 30 mg/kg effectively reversed the CCl4 induced hepatotoxic events, which was consistent with ultrastructural observations. Hexobarbitone-induced sleep time and plasma bromosulphalein retention also improved liver functions after emodin therapy. Conclusion:, By reversal CYP activity and ultrastructural changes, emodin shows a strong hepatoprotective abilities. [source] Aedes aegypti transducing densovirus pathogenesis and expression in Aedes aegypti and Anopheles gambiae larvaeINSECT MOLECULAR BIOLOGY, Issue 5 2001T. W. Ward Abstract Aedes aegypti densovirus (AeDNV) is a small DNA virus that has been developed into an expression and transducing vector for mosquitoes [Afanasiev et al. (1994) Exp Parasitol 79: 322,339; Afanasiev et al. (1999) Virology 257: 62,72; Carlson et al. (2000) Insect Transgenesis: Methods and Applications (Handler, A.M. & James, A.A., eds), pp. 139,159. CRC Press, Boca Raton]. Virions carrying a recombinant genome expressing the GFP gene were used to characterize the pathogenesis of the virus in 255 individual Aedes aegypti larvae. The anal papillae of the larvae were the primary site of infection confirming previous observations (Afanasiev et al., 1999; Allen-Muira et al. (1999) Virology 257: 54,61). GFP expression was observed in most cases to spread from the anal papillae to cells of the fat body, and subsequently to many other tissues including muscle fibers and nerves. Infected anal papillae were also observed to shrink, or melanize and subsequently fall off in a virus dependent manner. Three to four day-old larvae were less susceptible to viral infection and, if infected, were more likely to survive into adulthood, with 14% of them still expressing GFP as adults. Higher salt concentrations of 0.10,0.15 m inhibited viral infection. Anopheles gambiae larvae also showed infection of the anal papillae (17%) but subsequent viral dissemination did not occur. The persistence of the reporter gene expression into adulthood of Aedes aegypti indicates that transduction of mosquito larvae with recombinant AeDNV may be a means of introducing a gene of interest into a mosquito population for transient expression. [source] Prostaglandin E2 promotes cell proliferation via protein kinase C/extracellular signal regulated kinase pathway-dependent induction of c-Myc expression in human esophageal squamous cell carcinoma cellsINTERNATIONAL JOURNAL OF CANCER, Issue 11 2009Le Yu Abstract Overexpression of cyclooxygenase-2 (COX-2) and elevation of its derivative prostaglandin E2 (PGE2) are implicated in human esophageal squamous cell carcinoma. The expression of c-Myc, an oncogenic transcription factor, is also upregulated in this malignant disease. This study sought to elucidate whether a functional connection exists between COX-2/PGE2 and c-Myc in esophageal squamous cell carcinoma. Results showed that PGE2 substantially increased the proliferation of cultured esophageal squamous cell carcinoma cells. In this regard, PGE2 substantially increased the mRNA and protein expression of c-Myc and its association with the binding partner Max. Knockdown of c-Myc by RNA interference also significantly attenuated PGE2 -induced cell proliferation. Further, mechanistic study revealed that PGE2 increased the protein stability and nuclear accumulation of c-Myc via phosphorylation on serine 62 in an extracellular signal regulated kinase (ERK)-dependent manner. To this end, ERK activation by PGE2 was completely abolished by protein kinase C (PKC) inhibitors. Moreover, the effect of PGE2 on c-Myc expression was mimicked by EP2 receptor agonist. In addition, knockdown of EP2 receptor by EP2 siRNA attenuated PGE2 -induced c-Myc expression. Collectively, our findings suggest that PGE2 upregulates c-Myc via the EP2/PKC/ERK pathway. This study sheds new light on the carcinogenic mechanism of PGE2 in esophageal squamous cell carcinoma. © 2009 UICC [source] Expression of RANTES and MCP-1 in epithelial cells is regulated via LMP1 and CD40INTERNATIONAL JOURNAL OF CANCER, Issue 12 2007Maike Buettner Abstract Epstein-Barr virus (EBV)-associated undifferentiated nasopharyngeal carcinoma (NPC) is characterized by a prominent nonneoplastic lymphoid stroma. The functional role of these inflammatory cells and the mechanism of their recruitment are not fully understood. In B-cells, the EBV-encoded latent membrane protein 1 (LMP1) can induce the expression of chemokines in an NF-,B dependent manner. We now show that LMP1 can induce the expression of RANTES and MCP-1 in an epithelial cell line, and that this effect is partially reversible by an inhibitor of NF-,B. Since tumor cells of virtually all NPCs show CD40 expression while many cases are LMP1-negative at the protein level, we also investigated the effect of CD40 signaling and demonstrate that CD40 stimulation can transiently induce RANTES and MCP-1 expression in LMP1-negative epithelial cells. In in situ hybridization only rare tumor cells showed expression of these chemokines unrelated to LMP1 expression, a pattern consistent with transient induction through CD40 signaling. Since RANTES and MCP-1 were also detected in the neoplastic cells of oral squamous cell carcinomas lacking a lymphoid stroma it remains uncertain to what extent these CC chemokines contribute to the attraction of inflammatory cells into the NPC microenvironment. © 2007 Wiley-Liss, Inc. [source] Acute Effect of Cerivastatin on Cardiac Regional Ischemia in a Rat Model Mimicking Off-Pump Coronary SurgeryJOURNAL OF CARDIAC SURGERY, Issue 6 2005Koki Nakamura M.D. The aims of this study were to investigate the optimal duration of coronary occlusion for making reversible ischemia and to examine whether cerivastatin increases myocardial tolerance against prolonged coronary occlusion. Methods: Study 1,Male Sprague-Dawley rats (350 to 450 g) underwent temporary occlusion of either left anterior descending artery (LAD; for 3, 5, 7.5, 10, 12.5, 15, or 20 min) or circumflex artery (CX; for 5, 10, or 15 min). Study 2,Rats were divided into two groups, control and cerivastatin groups, which had 0.1 mg/kg cerivastatin intravenously after anesthesia. LAD was occluded for 10, 15, or 20 minutes. In the both studies, hearts were stained to determine the area at risk (AR) and infarcted (IF) area 24 hours after reperfusion. Results: In LAD occlusion, IF/AR increased in a time dependent manner: 4.5 ± 3.2%, 9.7 ± 5.2%, 17.2 ± 3.0%, 16.8 ± 2.7%, 23.9 ± 9.5% (p < 0.01 vs. 3 min), 62.4 ± 2.9% (p < 0.0001), and 63.4 ± 2.9% (p < 0.0001) at 3, 5, 7.5, 10, 12.5, 15, and 20 min, respectively. Also in CX, IF/AR increased with time: 14.3 ± 2.3%, 25.9 ± 2.1%, and 40.9 ± 6.2% (p < 0.001 vs. 5 min) at 5, 10, and 15 min, respectively. Cerivastatin significantly reduced IF/AR at 15 minutes (43.7 ± 6.2%) and at 20 minutes (44.6 ± 5.3%) compared to control (62.4 ± 2.9% and 60.6 ± 2.5%, respectively, p < 0.05). Conclusion: Cerivastatin increased myocardial tolerance after prolonged coronary occlusion over 10 minutes, which was considered to be the upper limit for creating a regional reversible ischemia in rats. [source] Functional and structural properties of stannin: Roles in cellular growth, selective toxicity, and mitochondrial responses to injuryJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2006M.L. Billingsley Abstract Stannin (Snn) was discovered using subtractive hybridization methodology designed to find gene products related to selective organotin toxicity and apoptosis. The cDNAs for Snn were first isolated from brain tissues sensitive to trimethyltin, and were subsequently used to localize, characterize, and identify genomic DNA, and other gene products of Snn. Snn is a highly conserved, 88 amino acid protein found primarily in vertebrates. There is a minor divergence in the C-terminal sequence between amphibians and primates, but a nearly complete conservation of the first 60 residues in all vertebrates sequenced to date. Snn is a membrane-bound protein and is localized, in part, to the mitochondria and other vesicular organelles, suggesting that both localization and conservation are significant for the overall function of the protein. The structure of Snn in a micellar environment and its architecture in lipid bilayers have been determined using a combination of solution and solid-state NMR, respectively. Snn structure comprised a single transmembrane domain (residues 10,33), a 28-residue linker region from residues 34,60 that contains a conserved CXC metal binding motif and a putative 14-3-3, binding region, and a cytoplasmic helix (residues 61,79), which is partially embedded into the membrane. Of primary interest is understanding how this highly-conserved peptide with an interesting structure and cellular localization transmits both normal and potentially toxic signals within the cell. Evidence to date suggests that organotins such as trimethyltin interact with the CXC region of Snn, which is vicinal to the putative 14-3-3 binding site. In vitro transfection analyses and microarray experiments have inferred a possible role of Snn in several key signaling systems, including activation of the p38-ERK cascade, p53-dependent pathways, and 14-3-3, protein-mediated processes. TNF, can induce Snn mRNA expression in endothelial cells in a PKC-, dependent manner. Studies with Snn siRNA suggest that this protein may be involved in growth regulation, since inhibition of Snn expression alone leads to reduced endothelial cells growth and induction of COP-1, a negative regulator of p53 function. A key piece of the puzzle, however, is how and why such a highly-conserved protein, localized to mitochondria, interacts with other regulatory proteins to alter growth and apoptosis. By knowing the structure, location, and possible signaling pathways involved, we propose that Snn constitutes an important sensor of mitochondrial damage, and plays a key role in the mediation of cross-talk between mitochondrial and nuclear compartments in specific cell types. J. Cell. Biochem. 98: 243,250, 2006. © 2006 Wiley-Liss, Inc. [source] Integrin ,v,3 is involved in stimulated migration of vascular adventitial fibroblasts by basic fibroblast growth factor but not platelet-derived growth factorJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2001Guizhen Liu Abstract We examined the effects of basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) on the migration of vascular adventitial fibroblasts (VAFs) isolated from rat aortic adventitiae. Both bFGF and PDGF significantly stimulated VAF migration in vitro. An antibody to rat ,3 integrin reduced bFGF-stimulated migration in a dose dependent manner. Moreover, VAF migration was inhibited in the presence of cyclic RGD (cRGD) peptide. However, PDGF-directed migration was blocked only by equivalent cRGD peptide but not by antibody to ,3 integrin. These data suggest that ,v,3 integrin mediates VAF migration stimulated by bFGF and that chemoattractant directed migration may be through distinct integrins. J. Cell. Biochem. 83: 129,135, 2001. © 2001 Wiley-Liss, Inc. [source] Role of TNF alpha and PLF in bone remodeling in a rat model of repetitive reaching and grasping,JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010Shobha Rani We have previously developed a voluntary rat model of highly repetitive reaching that provides an opportunity to study effects of non-weight bearing muscular loads on bone and mechanisms of naturally occurring inflammation on upper limb tissues in vivo. In this study, we investigated the relationship between inflammatory cytokines and matricellular proteins (Periostin-like-factor, PLF, and connective tissue growth factor, CTGF) using our model. We also examined the relationship between inflammatory cytokines, PLF and bone formation processes. Rats underwent initial training for 5 weeks, and then performed a high repetition high force (HRHF) task (12,reaches/min, 60% maximum grip force, 2,h/day, 3 days/week) for 6 weeks. We then examined the effect of training or task performance with or without treatment with a rat specific TNF, antibody on inflammatory cytokines, osteocalcin (a bone formation marker), PLF, CTGF, and behavioral indicators of pain or discomfort. The HRHF task decreased grip strength and induced forepaw mechanical hypersensitivity in both trained control and 6-week HRHF animals. Two weeks of anti-TNF, treatment improved grip strength in both groups, but did not ameliorate forepaw hypersensitivity. Moreover, anti-TNF, treatment attenuated task-induced increases in inflammatory cytokines (TNF,, IL-1,, and MIP2 in serum; TNF, in forelimb bone and muscles) and serum osteocalcin in 6-week HRHF animals. PLF levels in forelimb bones and flexor digitorum muscles increased significantly in 6-week HRHF animals, increases attenuated by anti-TNF, treatment. CTGF levels were unaffected by task performance or anti-TNF, treatment in 6-week HRHF muscles. In primary osteoblast cultures, TNF,, MIP2 and MIP3a treatment increased PLF levels in a dose dependent manner. Also in primary osteoblast cultures, increased PLF promoted proliferation and differentiation, the latter assessed by measuring Runx2, alkaline phosphatase (ALP) and osteocalcin mRNA levels; ALP activity; as well as calcium deposition and mineralization. Increased PLF also promoted cell adhesion in MC3T3-E1 osteoblast-like cell cultures. Thus, tissue loading in vivo resulted in increased TNF,, which increased PLF, which then induced anabolic bone formation, the latter results confirmed in vitro. J. Cell. Physiol. 225: 152,167, 2010. © 2010 Wiley-Liss, Inc. [source] High glucose increase cell cycle regulatory proteins level of mouse embryonic stem cells via PI3-K/Akt and MAPKs signal pathwaysJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2006Yun Hee Kim This study examined the effects of high glucose on cell proliferation and its related signal pathways using mouse embryonic stem (ES) cells. Here, we showed that high glucose level significantly increased [3H]thymidine incorporation, BrdU incorporation, the number of cells, [3H]leucine, and [3H]proline incorporation in a time-(>3 hr) and dose-(>25 mM) dependent manner. Moreover, high glucose level increased the cellular reactive oxygen species (ROS), Akt, and mitogen-activated protein kinases (MAPKs) phosphorylation. Subsequently, these signaling molecules involved in high glucose-induced increase of [3H]thymidine incorporation. High glucose level also increased cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4 protein levels, which is cell cycle regulatory proteins acting in G1,S phase of cell cycle. Inhibition of phosphatidylinositol 3-kinase (PI3-K) (LY 294002: PI3-kinase inhibitor, 10,6 M), Akt (Akt inhibitor, 10,5 M), and p44/42 MAPKs (PD 98059: MEK inhibitor, 10,5 M) decreased these proteins. High glucose level phosphorylated the RB protein, which was decreased by inhibition of PI3-K and Akt. In conclusion, high glucose level stimulates mouse ES cell proliferation via the PI3-K/Akt and MAPKs pathways. J. Cell. Physiol. 209: 94,102, 2006. © 2006 Wiley-Liss, Inc. [source] DAF-12-dependent rescue of dauer formation in Caenorhabditis elegans by (25S)-cholestenoic acidAGING CELL, Issue 4 2006Jason M. Held Summary Population density, temperature and food availability all regulate the formation of the Caenorhabditis elegans dauer larva by modulating endocrine signaling pathways. The orphan nuclear receptor DAF-12 is pivotal for the decision to form a dauer or to undergo normal reproductive development. The DAF-12 ligand has been predicted to be a sterol that is metabolized by DAF-9, a cytochrome P450. Here we chemically characterize purified lipophilic nematode extracts and show that the ligand for DAF-12 contains a carboxyl moiety and is likely to be derived from a sterol. Using a candidate ligand approach we find that the C27 bile acid cholestenoic acid (5-cholesten-3,-ol-(25S)-carboxylic acid) promotes reproductive growth in dauer-constitutive mutants in a daf-9 - and daf-12 -dependent manner. Furthermore, we find that cholestenoic acid can act as a DAF-12 ligand by activating DAF-12 in a cell-based transcription assay. Analysis of dauer-rescuing lipophilic extracts from nematodes by gas chromatography,mass spectrometry indicates the presence of several regioisomers of cholestenoic acid that are distinct from ,5 -cholestenoic acid and are not present in extracts from daf-9 mutants. These data suggest that carboxylated sterols may be key determinants of life history. [source] PROPERTIES OF CYSTEINE PROTEINASE INHIBITORS FROM BLACK GRAM AND RICE BEANJOURNAL OF FOOD BIOCHEMISTRY, Issue 3 2001SOOTTAWAT BENJAKUL ABSTRACT Cysteine proteinase inhibitors (CPI) were purified to 59 and 54 fold from black gram (Vignaraungo (L.) Hepper) and rice bean (Vignaumbellata Thunb.), respectively, by using heal treatment, followed by chromatography on a carboxymethyl (CM)-papain-Sepharose affinity column. The purified inhibitors were highly inhibitory to papain and Pacific whiting cathepsin L in a concentration dependent manner. They were detected as a dark band on tricine-SDS-PAGE gel stained for inhibitory activity. The apparent molecular weights of purified CPI from black gram and rice bean seeds were estimated to be 12, 000 daltons. The purified inhibitors were thermostable up to 90C and active in the neutral and alkaline pH ranges. [source] INHIBITION OF GEL WEAKENING OF THREADFIN BREAM SURIMI USING THAI LEGUME SEED PROTEINASE INHIBITORSJOURNAL OF FOOD BIOCHEMISTRY, Issue 5 2000SOOTTAWAT BENJAKUL ABSTRACT Partially purified proteinase inhibitors from cowpea (Vigna unguiculata (L) Wasp), pigeon pea (Cajanus cajan (L.) Millsp.) and bdmbara groundnuts (Voandzeia subterranea (L.) Thou) effectively inhibited sarcoplasmic modori-inducing proteinase extracted from threadfin bream muscle in a concentration dependent manner. Incorporation of these proteinase inhibitors into threadfin bream surimi partially inhibited autolytic degradation and increased the gel force and deformation. Combination of setting and incorporating proteinase inhibitors from cowpea and bambara groundnut var. HY at the level of 30 Kcunits/g resulted in an increase in gel force and deformation by 60% and 26%, respectively. However, the lightness and whiteness of surimi gels decreased slightly when the proteinase inhibitor was added at a level of 30 kunits/g. [source] Tuna Pepsin: Characteristics and Its Use for Collagen Extraction from the Skin of Threadfin Bream (Nemipterus spp.)JOURNAL OF FOOD SCIENCE, Issue 5 2008S. Nalinanon ABSTRACT:, Pepsin from the stomach of albacore tuna, skipjack tuna, and tongol tuna was characterized. Pepsin from all tuna species showed maximal activity at pH 2.0 and 50 °C when hemoglobin was used as a substrate. Among the stomach extract of all species tested, that of albacore tuna showed the highest activity (40.55 units/g tissue) (P < 0.05). Substrate-Native-PAGE revealed that pepsin from albacore tuna and tongol tuna consisted of 2 isoforms, whereas pepsin from skipjack tuna had only 1 form. The activity was completely inhibited by pepstatin A, while EDTA (ethylenediaminetetraacetic acid), SBTI (soybean trypsin inhibitor), and E-64 (1-(L -trans-epoxysuccinyl-leucylamino)-4-guanidinobutane) exhibited negligible effect. The activity was strongly inhibited by SDS (sodium dodecyl sulfate) (0.05% to 0.1%, w/v). Cysteine (5 to 50 mM) also showed an inhibitory effect in a concentration dependent manner. ATP, molybdate, NaCl, MgCl2, and CaCl2 had no impact on the activity. When tuna pepsin (10 units/g defatted skin) was used for collagen extraction from the skin of threadfin bream for 12 h, the yield of collagen increased by 1.84- to 2.32-fold and albacore pepsin showed the comparable extraction efficacy to porcine pepsin. The yield generally increased with increasing extraction time (P < 0.05). All collagen obtained with the aid of tuna pepsin showed similar protein patterns compared with those found in acid-solubilized collagen. Nevertheless, pepsin from skipjack tuna caused the degradation of , and , components. All collagens were classified as type I with large portion of ,-chain. However, proteins with molecular weight (MW) greater than 200 kDa were abundant in acid-solubilized collagen. [source] Bark beetle-mediated fungal infections of susceptible trees induce resistance to subsequent infections in a dose dependent mannerAGRICULTURAL AND FOREST ENTOMOLOGY, Issue 3 2009Nadir Erbilgin Abstract 1,Experiments were conducted to determine whether propagule loads on the twig beetles Pityophthorus setosus and Pityophthorus carmeli (Coleoptera: Scolytidae) influence the pathogen infection of the host tree in the Monterey pine- Fusarium circinatum system. 2,On an average, F. circinatum was isolated from 2.6% and 3.3% of trapped P. setosus and P. carmeli, respectively, although the isolation percentages varied over the season, being highest in the spring and lowest in late summer and fall for both species. Mean pathogen load was 13.4 and 22.6 propagules per beetle, on P. setosus and P. carmeli, respectively, and decreased from May to November for both species. The pathogen was also isolated from approximately 55% of both beetle species that emerged from infected branches. Mean propagule load on emerged P. setosus and P. carmeli was 39 and 66.5, respectively. 3,On the basis of these data, beetle species were treated with one of three propagule loads (low, medium, high) and caged onto live branches to determine whether they could transmit the pathogen. At all propagule loads, both species transmitted the pathogen, and transmission percentage and lesion length, a measure of tree susceptibility, were positively correlated with propagule load. 4,To investigate further whether the previous transmission by beetles could affect response of the same trees to subsequent infection with F. circinatum, different branches were inoculated on the same trees used in the transmission study, and lesion lengths were measured. Lesion lengths were lower on trees that had been previously exposed to beetles treated with high or medium propagule loads than on trees that had previously been exposed to beetles treated with low propagule loads. This suggests that the initial infection by beetles carrying high or medium propagule loads induced resistance to subsequent infections of the host, whereas infections caused by beetles with low propagule loads did not. [source] Toxic effect of blood components on perinatal rat subventricular zone cells and oligodendrocyte precursor cell proliferation, differentiation and migration in cultureJOURNAL OF NEUROCHEMISTRY, Issue 5 2009Packiasamy A. R. Juliet Abstract The germinal matrix of human brain gives rise to oligodendrocytes and astrocytes after mid-gestation. Hemorrhage in the germinal matrix of premature infants is associated with suppressed cell proliferation. We hypothesize that soluble blood constituents have an adverse effect on the proliferation of cultured rat subventricular zone (SVZ) cells and the proliferation, migration, and differentiation of oligodendrocyte progenitor cells (OPC). Using caspase 3 activation and lactate dehydrogenase release assays, rat plasma, serum, thrombin, and kallikrein killed SVZ cells when grown in the presence (but not absence) of platelet derived growth factor. Plasma and serum killed OPC at 1 : 1 to 1 : 100 dilutions. Using a bromodeoxyuridine incorporation assay OPC proliferation was reduced by plasma, serum, thrombin and plasmin. Blood proteins also suppressed OPC migration in a concentration dependent manner. However, differentiation of OPC into myelin basic protein expressing cells was suppressed only by thrombin. We conclude that soluble blood components, particularly thrombin, have an adverse effect on maturing SVZ cells and OPC derived from newborn rat brain. [source] Potentiation of PGE2 -mediated cAMP production during neuronal differentiation of human neuroblastoma SK-N-BE(2)C cellsJOURNAL OF NEUROCHEMISTRY, Issue 2 2001Se-Young Choi The prostaglandin-evoked cAMP production was studied in human neuroblastoma SK-N-BE(2)C cells during neuronal differentiation induced by all- trans retinoic acid. The incubation with 5 µm all- trans retinoic acid for 4,6 days promoted neurite outgrowth of cells. After differentiation, prostaglandin E2 (PGE2)-induced cAMP production was dramatically increased, whereas forskolin- and AlF -induced cAMP productions were not changed. The increase reached maximum after 4-days of incubation with all- trans retinoic acid. The differentiation caused an increase in the maximal response and a decrease in the half-maximal effective concentration of the PGE2 -induced cAMP production. In addition, the binding of [3H]PGE2 to membrane receptors was enhanced in differentiated cells. However, the order of potency of the various prostaglandins (PGE1 = PGE2 > PGD2 = PGF2, = PGI2) in cAMP production did not change during the differentiation, suggesting that mainly E-prostanoid (EP) receptors were involved. Butaprost, an EP2 receptor specific agonist, increased the cAMP level in a concentration dependent manner and had a similar potentiating effect on cAMP production as PGE2 upon differentiation. Northern blot analysis using the human cDNA probes shows that the EP2 mRNA level was about seven times higher in differentiated cells, while the dopamine ,-hydroxylase (DBH) mRNA completely disappeared. Our results, thus, suggest that elevated gene expression of the prostanoid EP2 receptor results in an increase in the PGE2 -evoked cAMP production in SK-N-BE(2)C cells during neuronal differentiation. [source] |