Dependent Kinase Inhibitor (dependent + kinase_inhibitor)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Dependent Kinase Inhibitor

  • cyclin dependent kinase inhibitor


  • Selected Abstracts


    2-(Benzylsulfanyl)-6-chloro-9-isopropylpurine, a Valuable Intermediate in the Synthesis of Diaminopurine Cyclin Dependent Kinase Inhibitors

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 5 2005
    David Taddei
    Abstract The synthetic potential of a novel precursor of 2,6-diaminopurine CDK inhibitors, 2-(benzylsulfanyl)-6-chloro-9-isopropylpurine, is described. The Traube purine synthesis was chosen to prepare the required 2-(benzylsulfanyl)hypoxanthine intermediate. Attempts to prepare its purin-6-yl methanesulfonic ester analogue failed. Conversion to the 6-chloropurine derivative enabled the introduction of arylamines in the presence of catalytic amounts of acid. Further chemical variety was introduced on the purine through a regioselective Mitsunobu N -9 alkylation. Oxidative cleavage of the 2-(benzylsulfanyl) leaving group with an aliphatic amine was implemented as previously reported. Purvalanol A, a potent CDK inhibitor, was synthesised using this methodology. The template and intermediates were fully characterised by modern spectroscopic techniques and single-crystal X-ray diffraction. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


    p16Ink4a is Overexpressed in H. pylori -Associated Gastritis and is Correlated with Increased Epithelial Apoptosis

    HELICOBACTER, Issue 1 2003
    Haim Shirin
    ABSTRACT Background. Cell cycle regulatory proteins may be critical targets during carcinogenesis. We have previously shown that chronic H. pylori infection is associated with decreased expression of the cyclin dependent kinase inhibitor (CDI) p27kip1. Loss of p27kip1 and p16Ink4a (p16) expression, another CDI, has been reported during the progression of gastric tubular adenomas to advanced gastric cancer. The aim of the current study was to examine whether H. pylori infection also affects the expression of p16 in the gastric mucosa of H. pylori- infected patients. Methods. p16 expression was evaluated in gastric antral biopsies by immunohistochemistry in 50 patients with nonulcer dyspepsia (n = 18 uninfected, n = 32 H. pylori infected, 24 by cagA+ strains). Adjacent sections were stained for proliferating epithelial cells (by Ki67) and for apoptotic cells (by TUNEL assay). Results. Both in H. pylori infected and uninfected patients the expression of p16 was higher in the neck and base of the gland than in the foveolar region. Epithelial staining for p16 was increased with H. pylori infection (31.3% vs. 11.1% in the foveolar region, 68.8% vs. 27.8% in the neck and 75% vs. 50% in the glandular base). There was no correlation between the expression of 16 and proliferation but there was a significant positive correlation between apoptosis and 16 immunostaining. Conclusions. The tumor suppressor gene 16 is over expressed in gastric epithelial cells of H. pylori infected patients and this is associated with an increase in apoptosis. These findings suggest a possible role for this cell cycle regulator in the increase in gastric cell turnover that is associated with H. pylori infection. [source]


    Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship,

    JOURNAL OF CUTANEOUS PATHOLOGY, Issue 10 2004
    Qing Li
    Background:, S-phase kinase associated protein-2 (Skp2) ubiquitin ligase p45SKP2 is important in the degradation of p27kip1 (a cyclin dependent kinase inhibitor) and progression through the G1-S cell-cycle checkpoint. Low levels of p27 and high levels of Skp2 are related to poor prognosis in some cancers. Methods:, Clinicopathologic features and immunohistochemical expression of Skp2 and p27kip1 were investigated in 198 melanocytic proliferations: 21 melanocytic nevi, 23 melanoma in situ, 119 primary melanoma, and 35 metastatic melanoma samples. Comparative and survival analyses were performed. Results:, Progressive and significant increases and decreases in the nuclear expression of Skp2 and p27kip1, respectively, was identified moving from melanocytic nevi (0.05 ± 0.2/85 ± 15) to melanoma in situ (3 ± 2/45 ± 20) to primary cutaneous melanoma (12 ± 9/30 ± 25) to metastatic melanoma (25 ± 15/15 ± 20) (p , 0.006). Expression of these proteins also significantly correlated with increasing American Joint Committee on Cancer (AJCC) T (tumor) classification and AJCC stage (p , 0.01). Moreover, the level of these two proteins exhibited a significant inverse relationship (r = ,0.4, p = 0.0001). Skp2 cytoplasmic labeling index of >20% predicted worse 10-year overall survival (38% vs. 86%, p = 0.04) in primary melanoma. Neither p27 nor Skp2 nuclear expression impacted significantly on prognosis. Conclusions:, Gain of Skp2 and loss of p27kip1 protein expression are implicated in melanoma progression where the level of p27kip1 may be regulated by targeted proteolysis via Skp2. Cytoplasmic expression of Skp2 defines a subset of aggressive melanomas and could represent another pathway of deregulation of the cell cycle. [source]


    Richter syndrome in B-cell chronic lymphocytic leukemia

    PATHOLOGY INTERNATIONAL, Issue 4 2003
    Naoya Nakamura
    Richter syndrome (RS) is well known as a secondary high-grade lymphoma, mostly diffuse large B-cell lymphoma (DLBCL) developed in patients with B-cell chronic lymphocytic leukemia (B-CLL). In this review, we describe clinicopathological, histological, immunophenotypical and genetic findings of RS. The patients with RS, regardless of transformation of pre-existing clone or de novo malignant clone, were resistant to conventional combined chemotherapy and died within months of diagnosis. Molecular techniques can provide convincing results for the clonal relationship of RS to pre-existing B-CLL. When RS carries a same rearrangement band or a same sequence as B-CLL by Southern blotting or nucleotide sequence analyses of immunoglobulin heavy and/or light chain genes, it is suggested to that RS transforms from original B-CLL. These analyses have showed that approximately two-thirds of RS cases evolved from a B-CLL clone. How and where does the B-CLL clone evolve to RS? The genetic alteration of transforming B-CLL clone into RS has been addressed. Abnormalities of chromosomes 11 and 14 were most frequently involved in RS, but non-specific. In addition, RS does not include chromosomal translocation between Ig locus and oncogenes or rearrangements of bcl-6 gene, both of which were found in some de novo DLBCL. Several candidates, such as mutation of p53 gene and abnormalities of cyclin dependent kinase inhibitor, have been proposed to play an important role in the transformation of a part of B-CLL. However, there is still uncertainly as to how B-CLL progresses or develops into RS. [source]


    Genetic engineering to study testicular tumorigenesis

    APMIS, Issue 1 2003
    WEI YAN
    In humans, Sertoli cell tumors account for approximately 4% of all testicular tumors, and 20% of these are malignant. The mechanisms underlying Sertoli cell tumorigenesis remain largely unknown. Using gene knockout technology, we previously generated mutant mice lacking the , subunit of inhibin dimers. The inhibin ,-null male mice develop testicular Sertoli cell tumors with 100% penetrance. These tumors develop as early as 4 weeks of age and cause a cachexia-like wasting syndrome. Castrated inhibin , knockout mice develop sex steroidogenic adrenal cortical tumors. These studies have identified inhibins as secreted tumor suppressors with specificity for the gonads and adrenal glands. It had been suggested that endocrine factors play roles in Sertoli cell tumorigenesis by altering cell cycle machinery of the Sertoli cells. To test the potential of these factors to function as modifiers of Sertoli cell tumorigenesis, we have employed a genetic intercross strategy, breeding inhibin , mutant mice with mutant mice deficient in endocrine signaling factors including gonadotropin releasing hormone (hypogonadal, hpg mice), follicle stimulating hormone, anti-Müllerian hormone (MH), activin receptor type II, or androgen receptor (testicular feminization, tfm mice), or mice overexpressing follistatin. We are also investigating the effects of loss of critical cell cycle regulators, such as cyclin dependent kinase inhibitor p27, on Sertoli cell tumorigenesis in inhibin , knockout males. These studies clearly demonstrate the roles of these factors as modifiers of the Sertoli cell tumorigenesis. Activin signaling through activin receptor type II is responsible for the cachexia-like syndrome observed in the inhibin , knockout mice with tumors. The gonadotropin hormones are essential for testicular tumor development, but elevated FSH levels are not sufficient to cause Sertoli cell tumors. Absence of FSH, lack of androgen receptor, or overexpression of follistatin slows the tumor growth and minimizes the cachexia symptoms, thus prolonging the life span of these double mutant mice. In contrast, absence of AMH or p27 causes earlier onset and more aggressive development of testicular tumor, with an earlier death of double mutant mice. We are currently investigating roles of estrogen signaling pathways, and other cell cycle regulators, in tumor development in the inhibin , knockout mice by generating mice with double or triple mutations. Genetic engineering in mouse models provides a powerful tool to study the mechanisms of testicular tumorigenesis and define the important genetic modifiers in vivo. [source]


    Vitamin D and Its Analog EB1089 Induce p27 Accumulation and Diminish Association of p27 with Skp2 Independent of PTEN in Pituitary Corticotroph Cells

    BRAIN PATHOLOGY, Issue 4 2002
    Wei Liu
    Disruption of the gene for the cyclin dependent kinase inhibitor (CDKI) p27/kip1 results in pituitary corticotroph hyperplasia while diminished expression of this protein has been described in aggressive human pituitary tumors. We have previously shown that 1,25-vitamin D3 (VD) hypophosphorylates p27 and interferes with the degradation of this CDKI in thyroid carcinoma cells. In this study we investigated whether VD/EB1089 can induce p27 accumulation and cause growth arrest of pituitary corticotroph cells. VD and EB1089 exhibited a significant reduction in AtT20 corticotroph but not PRL235 Iactotroph cell growth. These changes were accompanied by selective accumulation of p27 in AtT20 but not in PRL235 cells. As p27 levels are highly dependent on protein degradation, we examined the effect of VD/EB1089 on p27 association with factors that target this CDKI to the proteasome. VD/EB1089 significantly restricted the association of p27 with Skp2 as well as with cyclin dependent kinase 2 (CDK2). As the tumor suppressor and phosphatase PTEN has been implicated in p27 regulation, we tested whether the effects of VD/EB1089 on p27 accumulation in corticotrophs could be mediated through this pathway. VD/EB1089 did not appreciably alter PTEN expression. Moreover, transfection of PTEN did not influence the effect of VD on p27 accumulation in corticotrophs. We conclude that VD/EB1089 can selectively arrest pituitary corticotroph growth and induce p27 accumulation. This effect is mediated at least partially through diminished p27 association with Skp2 and with CDK2. In contrast to other cell systems, PTEN does not participate in the regulation of corticotroph p27 and is not involved in mediating the effect of VD on p27 in these cells. Our findings highlight p27 and VD analogs as targets for manipulation and drug development respectively in the treatment of inoperable corticotroph adenomas. [source]


    Modulation of cyclin dependent kinase inhibitor proteins and ERK1/2 activity in allylamine-injured vascular smooth muscle cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2004
    Sarah A. Jones
    Abstract Chronic oxidative injury by allylamine (AAM) induces proliferative vascular smooth muscle cell (vSMC) phenotypes in the rat aorta similar to those seen in rodent and human atherosclerotic lesions. The proliferative advantage of AAM vSMC compared to control cells is maintained with serial passage of the cells and the advantage is nullified when AAM cells are seeded on a collagen substrate. In this study, we evaluate the potential role of cyclin dependent kinase inhibitors, p27 and p21, and mitogen activated protein (MAP) kinases, ERK1/2, in mediating the proliferative advantage of AAM stressed vSMC over control cells on plastic or collagen substrates. p27 levels in randomly cycling cells were comparable in both cell types irrespective of the substrate. In contrast, basal levels of p21 were 1.9,±,0.3 (P,<,0.05)-fold higher in randomly cycling AAM cells seeded on plastic compared to controls, a difference that was lost on a collagen substrate. Following G0 synchronization, basal levels of both p27 and p21 were higher in AAM cells seeded on plastic compared to controls (1.7,±,0.2 and 2.0,±,0.3-fold, respectively, P,<,0.05), but these differences were lost upon mitogenic stimulation. Pyrrolidine dithiocarbamate (PDTC) decreased p27 and p21 levels in cycling AAM cells relative to controls in a substrate-dependent manner. AAM cells seeded on plastic exhibited enhanced ERK1/2 activation upon mitogenic stimulation; seeding on collagen nullified this advantage. The duration of ERK1/2 activation was prolonged in AAM cells independently of the seeding substrate. We conclude that substrate-dependent acquisition of proliferative phenotypes following repeated cycles of AAM injury correlates with modulation of the cyclin dependent kinase inhibitors, p27 and p21. © 2004 Wiley-Liss, Inc. [source]


    Vitamin D and systemic cancer: is this relevant to malignant melanoma?

    BRITISH JOURNAL OF DERMATOLOGY, Issue 2 2002
    J.E. Osborne
    Summary 1,25-dihydroxyvitamin D3[1,25(OH)2D3] is a well-known potent regulator of cell growth and differentiation and there is recent evidence of an effect on cell death, tumour invasion and angiogenesis, which makes it a candidate agent for cancer regulation. The classical synthetic pathway of 1,25(OH)2D3 involves 25- and 1,-hydroxylation of vitamin D3, in the liver and kidney, respectively, of absorbed or skin-synthesized vitamin D3. There is recent focus on the importance in growth control of local metabolism of 1,25(OH)2D3, which is a function of local tissue synthetic hydroxylases and particularly the principal catabolizing enzyme, 24-hydroxylase. The classical signalling pathway of 1,25(OH)2D3 employs the vitamin D nuclear receptor (VDR), which is a transcription factor for 1,25(OH)2D3 target genes. Effects of this pathway include inhibition of cellular growth and invasion. Cytoplasmic signalling pathways are increasingly being recognized, which similarly may regulate growth and differentiation but also apoptosis. 1,25(OH)2D3 has a major inhibitory effect on the G1/S checkpoint of the cell cycle by upregulating the cyclin dependent kinase inhibitors p27 and p21, and by inhibiting cyclin D1. Indirect mechanisms include upregulation of transforming growth factor-, and downregulation of the epidermal growth factor receptor. 1,25(OH)2D3 may induce apoptosis either indirectly through effects on the insulin-like growth receptor and tumour necrosis factor-, or more directly via the Bcl-2 family system, the ceramide pathway, the death receptors (e.g. Fas) and the stress-activated protein kinase pathways (Jun N terminal kinase and p38). Inhibition of tumour invasion and metastasis potential has been demonstrated and mechanisms include inhibition of serine proteinases, metalloproteinases and angiogenesis. The lines of evidence for an effect of vitamin D3 in systemic cancer are the laboratory demonstration of relevant effects on cellular growth, differentiation, apoptosis, malignant cell invasion and metastasis; epidemiological findings of an association of the occurrence and outcome of cancers with derangements of vitamin D3/1,25(OH)2D3 and the association of functional polymorphisms of the VDR with the occurrence of certain cancers. In addition, vitamin D3 analogues are being developed as cancer chemotherapy agents. There is accumulating evidence that the vitamin D3/1,25(OH)2D3/VDR axis is similarly important in malignant melanoma (MM). MM cells express the VDR, and the antiproliferative and prodifferentiation effects of 1,25(OH)2D3 have been shown in cultured melanocytes, MM cells and MM xenografts. Recently, an inhibitory effect on the spread of MM cells has been demonstrated, low serum levels of 1,25(OH)2D3 have been reported in MM patients and the VDR polymorphisms have been shown to be associated with both the occurrence and outcome of MM. The relationship between solar irradiation and MM is more complex than for the systemic cancers. As in other cancers, there is evidence of a protective effect of vitamin D3 in MM, but ultraviolet radiation, which is a principal source of vitamin D3, is mutagenic. Further work is necessary on the influence of serum vitamin D3 levels on the occurrence and prognosis of MM, the effects of sun protection measures on serum vitamin D3 levels in temperate climates and epidemiological studies on geographical factors and skin type on the prognosis of MM. Meanwhile, it would seem mandatory to ensure an adequate vitamin D3 status if sun exposure were seriously curtailed, certainly in relation to carcinoma of breast, prostate and colon and probably also MM. [source]