Home About us Contact | |||
Dependent Changes (dependent + change)
Selected AbstractsModified methodology for computing interference in LEO satellite environmentsINTERNATIONAL JOURNAL OF SATELLITE COMMUNICATIONS AND NETWORKING, Issue 6 2003Raúl Chávez Santiago Abstract Computing interference is very important in satellite networks design in order to assure the electromagnetic compatibility (EMC) with other radiocommunication systems. There are different methods to compute interference in geostationary (GEO) satellite systems including conventional methods using link budget equations and alternate methods such as increase in noise temperature. However, computing interference in low earth orbit (LEO) systems represents a different problem. Due to the special characteristics of this kind of orbits, the elevation angle at any site changes continuously over time, meaning a time dependent change of the propagation path length between an interfering transmitter and an interfered-with receiver, and of the discrimination provided by the transmitting and/or the receiving antenna. Thus, conventional interference prediction methods developed for fixed links must be adapted to the case of LEO systems. To overcome this problem a mathematical model that characterizes the path length variations by an average value obtained from the probability density function of the varying distance between an interfering transmitter and an interfered- with receiver is proposed in this paper. This average path length enables the use of conventional link budget methods to reduce the computation time for the evaluation of interference in LEO satellite environments. Two practical examples show the possible applications of the proposed model. Copyright © 2003 John Wiley & Sons, Ltd. [source] PTH-dependent adenylyl cyclase activation in SaOS-2 cells: Passage dependent effects on G protein interactionsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2002Hong Gao Parathyroid hormone (PTH) sensitive adenylyl cyclase activity (ACA) in SaOS-2 cells varies as a function of cell passage. In early passage (EP) cells (<,6), ACA in response to PTH and forskolin (FOR) was relatively low and equivalent, whereas in late passage (LP) cells (>,22), PTH exceeded FOR dependent ACA. Potential biochemical mechanisms for this passage dependent change in ACA were considered. In EP, prolonged exposure to pertussis toxin (PT) markedly enhanced ACA activity in response to PTH, Isoproterenol and Gpp(NH)p, whereas ACA in response to FOR was decreased. In contrast, the identical treatment of LP with PT diminished all ACA in response to PTH, Gpp(NH)p, and FOR. The dose dependent effects of PT on subsequent [32P]ADP-ribosylation of its substrates, GTPase activity, as well as FOR-dependent ACA, were equivalent in EP and LP. The relative amounts of G,i and G,s proteins, as determined both by Western blot, PT and cholera toxin (CT) dependent [32P]ADP-ribosylation, were quantitatively similar in EP and LP. Western blot levels of G,s and G,i proteins were not influenced by prior exposure to PT. Both PT and CT dependent [32P]ADP-ribosylation were dose-dependently decreased following exposure to PT. However, the PT-dependent decline in CT-dependent [32P]ADP-ribosylation occurred with enhanced sensitivity in LP. The protein synthesis inhibitor cycloheximide partially reversed the PT associated decrease in FOR dependent ACA in EP. In contrast, cycloheximide completely reversed the PT associated decrease in FOR and as well as PTH dependent ACA in LP. G,s activity, revealed by cyc, reconstitution, was not altered either by cell passage or exposure to PT. The results suggest that the coupling between the components of the complex may be pivotally important in the differential responsiveness of early and late passage SaOS-2 cells to PTH. J. Cell. Physiol. 193: 10,18, 2002. © 2002 Wiley-Liss, Inc. [source] Irregular dimerization of guanylate cyclase-activating protein 1 mutants causes loss of target activationFEBS JOURNAL, Issue 18 2004Ji-Young Hwang Guanylate cyclase-activating proteins (GCAPs) are neuronal calcium sensors that activate membrane bound guanylate cyclases (EC 4.6.1.2.) of vertebrate photoreceptor cells when cytoplasmic Ca2+ decreases during illumination. GCAPs contain four EF-hand Ca2+ -binding motifs, but the first EF-hand is nonfunctional. It was concluded that for GCAP-2, the loss of Ca2+ -binding ability of EF-hand 1 resulted in a region that is crucial for targeting guanylate cyclase [Ermilov, A.N., Olshevskaya, E.V. & Dizhoor, A.M. (2001) J. Biol. Chem.276, 48143,48148]. In this study we tested the consequences of mutations in EF-hand 1 of GCAP-1 with respect to Ca2+ binding, Ca2+ -induced conformational changes and target activation. When the nonfunctional first EF-hand in GCAP-1 is replaced by a functional EF-hand the chimeric mutant CaM,GCAP-1 bound four Ca2+ and showed similar Ca2+ -dependent changes in tryptophan fluorescence as the wild-type. CaM,GCAP-1 neither activated nor interacted with guanylate cyclase. Size exclusion chromatography revealed that the mutant tended to form inactive dimers instead of active monomers like the wild-type. Critical amino acids in EF-hand 1 of GCAP-1 are cysteine at position 29 and proline at position 30, as changing these to glycine was sufficient to cause loss of target activation without a loss of Ca2+ -induced conformational changes. The latter mutation also promoted dimerization of the protein. Our results show that EF-hand 1 in wild-type GCAP-1 is critical for providing the correct conformation for target activation. [source] Prostate carcinoma cells selected by long-term exposure to reduced oxygen tension show remarkable biochemical plasticity via modulation of superoxide, HIF-1, levels, and energy metabolismJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007Jeanne Bourdeau-Heller Cancer cells are able to tolerate levels of O2 that are damaging or lethal to normal cells; we hypothesize that this tolerance is the result of biochemical plasticity which maintains cellular homeostasis of both energy levels and oxidation state. In order to examine this hypothesis, we used different O2 levels as a selective agent during long-term culture of DU145 prostate cancer cells to develop three isogenic cell lines that grow in normoxic (4%), hyperoxic (21%), or hypoxic (1%) O2 conditions. Growth characteristics and O2 consumption differed significantly between these cell lines without changes in ATP levels or altered sensitivity to 2-deoxy- D -glucose, an inhibitor of glycolysis. O2 consumption was significantly higher in the hyperoxic line as was the level of endogenous superoxide. The hypoxic cell line regulated the chemical gradient of the proton motive force (PMF) independent of the electrical component without O2 -dependent changes in Hif-1, levels. In contrast, the normoxic line regulated Hif-1, without tight regulation of the chemical component of the PMF noted in the hypoxic cell line. From these studies, we conclude that selection of prostate cancer cells by long-term exposure to low ambient levels of O2 resulted in cells with unique biochemical properties in which energy metabolism, reactive oxygen species (ROS), and HIF-1, levels are modulated to allow cell survival and growth. Thus, cancer cells exhibit remarkable biochemical plasticity in response to various O2 levels. J. Cell. Physiol. 212:744,752, 2007. © 2007 Wiley-Liss, Inc. [source] MicroCT evaluation of normal and osteoarthritic bone structure in human knee specimensJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 1 2003Vikas Patel Abstract Although trabecular bone structure has been evaluated, variation with knee compartment and depth from joint surface is not completely understood. Cadaver knees were evaluated with microcomputed tomography analysis for these variations. Objective differences were compared between: medial vs. lateral compartments; femoral vs. tibial bone; and normal vs. arthritic knees. Depth dependent changes in the parameters were observed for the first 6 mm of the cores in normal knees: BV/TV, Tb.N and Conn.D gradually decrease, while Tb.Sp and SMI increase. In the first 6 mm of the normal tibia BV/TV, Tb.N, and Tb.Th are greater than in the femur on both the medial and lateral compartments while Tb.Sp, SMI, and Conn.D are lower. The medial compartment values for BV/TV, Tb.N, Tb.Th and Conn.D are generally greater than for the lateral in both the femur and tibia while Tb.Sp and SMI are lower. In comparison of normal vs. arthritic knees significant differences are observed in the first 6 mm of the medial tibia. With arthritis BV/TV and Tb.Th are lower, while SMI and Tb.Sp are higher. Tb.N and Conn.D show no statistically significant difference. The bone structure variations are, thus, most prominent in the first 6 mm of depth and medial compartment bone is generally more structurally sound than lateral. Severely arthritic bone changes are most prominent in the medial compartment of the tibia and bone structure is less sound in severe arthritis. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] Optimal methods for fluorescence and diffuse reflectance measurements of tissue biopsy samplesLASERS IN SURGERY AND MEDICINE, Issue 3 2002Gregory M. Palmer BS Abstract Background and Objective In developing fluorescence spectroscopy systems for the in vivo detection of pre-cancer and cancer, it is often necessary to perform preliminary testing on tissue biopsies. Current standard protocols call for the tissue to be immediately frozen after biopsy and later thawed for spectroscopic analysis, but this process can have profound effects on the spectroscopic properties of tissue. This study investigates the optimal tissue handling methods for in vitro fluorescence spectroscopy studies. Study Design/Materials and Methods The epithelial tissue of the Golden Syrian hamster cheek pouch was used in this study. Three specific experiments were carried out. First, the fluorescence properties of tissues in vivo and of frozen and thawed tissue biopsies were characterized at multiple excitation wavelengths spanning the ultraviolet-visible (UV-VIS) spectrum. Next, comparison of tissue fluorescence emission spectra in vivo, ex vivo (immediately after biopsy), and after the freeze and thaw process were systematically carried out at the excitation wavelengths corresponding to the previously identified fluorescence peaks. Lastly, intensities at the excitation and emission wavelength pairs corresponding to the fluorescence peaks were measured as a function of time after biopsy. Diffuse reflectance measurements over the UV-VIS spectrum were also made to evaluate the effects of oxygenation, blood volume, and scattering on the tissue fluorescence at these different excitation,emission wavelengths. Results This study indicates that the freezing and thawing process produces a significant deviation in intensity and lineshape relative to the in vivo fluorescence emission spectral data over the entire UV-VIS range between 300 and 700 nm. By contrast, examination of ex vivo emission spectra reveals that it closely preserves both the intensity and lineshape of the in vivo emission spectra except between 500 and 700 nm. The observed deviations can be explained by the diffuse reflectance measurements, which suggest increased hemoglobin deoxygenation and wavelength dependent changes in scattering in ex vivo tissues, and increased total hemoglobin absorption in the frozen and thawed samples. Furthermore, it was found that over a time window of 1.5 hours, spectroscopic changes brought about by degradation of the tissue due to biopsy or other factors are significantly smaller (10,30% variations in intensity) than those associated with the freezing and thawing process (50,70% decrease in intensity). Conclusions It was found that the effects of freezing and thawing on the fluorescence properties of tissue are greater than any changes brought about by degradation of tissue over a time frame of 90 minutes after biopsy. Performing ex vivo fluorescence measurements within a reasonable time window has the advantage of more accurately reproducing the clinically relevant in vivo conditions in the case of the hamster cheek pouch tissue. Therefore, in tissue biopsy studies, the tissue sample should ideally be maintained in an unfrozen state prior to measurement. Lasers Surg. Med. 30:191-200, 2002. © 2002 Wiley-Liss, Inc. [source] Effect of Underlying Heart Disease on the Frequency Content of Ventricular Fibrillation in the Dog HeartPACING AND CLINICAL ELECTROPHYSIOLOGY, Issue 2 2000JASON T. JACOBSON Although prior studies have examined the frequency content of heal electro-gram characteristics during fibrillation, little is know about the effects of underlying heart disease on these parameters. This study was designed to compare the frequency content of local electrograms during VF in canine models of acute ischemia, subacute infarction, and chronic myocardial infarction (MI) to those in control animals to test the hypothesis that underlying heart disease can alter the basic characteristics of VF. VF was induced using burst pacing in three groups of mongrel dogs. Five dogs were evaluated 8 weeks after LAD occlusion MI, five were evaluated 5 days after experimental MI, and 5 had VF induced before (control) and immediately after LAD occlusion (ischemia). During VF, unipolar electrograms were recorded from 112 sites on the anterior LV and electrograms were evaluated 15 and 30 seconds after VF initiation in each group. Electrograms were analyzed by fast Fourier transform. No significant time dependent changes in VF characteristics were noted. The peak frequency was highest in control animals and 8-week MI, intermediate in 5-day MI, and lowest in acute ischemia (P < 0.01 for pairwise comparisons). In contrast, the fractional of energy within a bandwidth of 25% peak amplitude was highest in acute ischemia, (P < 0.001) and similar in the other three groups. Infarction decreased total energy by approximately 50%. In conclusion, the pressure of ischemia or infarction alters the frequency content of VF in a complex fashion. In addition to decreasing the peak frequency, the shape of the power spectral curve is altered in models of structural heart disease. These results suggest that the electrophysiological changes produced by infarction or ischemia alter the structural organization of ventricular fibrillation. [source] Proteome analysis of the responses of Panax ginseng C. A. Meyer leaves to high light: Use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag dataPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 12 2003Myung Hee Nam Abstract We performed comparative proteomic analyses in order to understand the physiological responses of ginseng (Panax ginseng C. A. Meyer) to high light (HL). As a first step, we analyzed the proteins expressed in ginseng leaves. Proteins extracted from leaves were separated by two-dimensional polyacrylamide gel electrophoresis. Protein spots were identified by tandem mass spectra analysis using electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS). We used a ginseng expressed sequence tag (EST) database as well as a nonredundant protein database from NCBI to identify proteins. Eighty-one proteins were identified using the nr protein database, 51 of which were also verified from the ginseng EST database. An additional 66 proteins were identified only from the ginseng EST database. Proteins that function in energy metabolism, protein stabilization, and protection against oxidative stress were abundant. To understand the light responses of ginseng leaves, we studied time dependent changes in expressed proteins produced by 0,4 h of HL exposure. Six HL-responsive proteins were identified: three proteins were up-regulated (cytosolic small heat-shock protein, cytosolic ascorbate peroxidase, and putative major latex-like protein) and three proteins were down-regulated (Rieske Fe/S protein, putative 3-beta hydroxysteroid dehydrogenase/isomerase-like protein, and oxygen-evolving enhancer-like protein). Our results show that the ginseng EST database combined with ESI Q-TOF MS analysis can be used to identify ginseng proteins and to elucidate the protective mechanism of ginseng against HL induced damage. [source] Von Neuronen zu Netzwerken.BIOLOGIE IN UNSERER ZEIT (BIUZ), Issue 6 2009Mathematische Gehirnmodelle Abstract Obwohl unser Verständnis des Nervensystems große Fortschritte macht, stellen Netzwerke aus Milliarden von Neuronen die Neurobiologie vor eine praktisch unlösbare Aufgabe: Die Aktivität eines Gehirns möglichst vollständig zu erfassen und das Beobachtete detailliert zu verstehen. Die "Computational Neuroscience" versucht Brücken zwischen den Konzepten der Teildisziplinen zu schlagen. Die mathematische Beschreibung von Nervenzellen und neuronalen Netzwerken, sowie die Simulation dieser Systeme in Form von Computermodellen, erlaubt Phänomene zu ergründen, die in biologischen Gehirnen nur unter größten Schwierigkeiten messbar sind. Jüngste Studien konnten unter anderem zeigen, dass erregungsabhängige Veränderungen der elektrischen Leitfähigkeit in Neuronen ein Netzwerk davor bewahren, dass räumlich begrenzte Erregung sich aufschaukelt und als Folge die Aktivität im gesamten Netzwerk zum Erliegen bringt. Dieselbe Eigenschaft führt außerdem dazu, dass ein Netzwerk auch ohne äußere Anregung aktiv bleiben kann , eine wichtige Grundeigenschaft von Gehirnen, deren neuronale Funktionsmechanismen bis heute weitgehend unverstanden sind. Our understanding of the nervous system has made great leaps forward. Yet still, the study of networks of billions of neurons poses an almost insolvable challenge to empirical neurobiology: to capture the activity of a brain as a whole, and to make sense of the observations in detail. Here, "Computational Neuroscience" attempts to build bridges between the concepts of the involved disciplines. The mathematical description of neurons and neuronal networks, as well as the simulation of these systems as computer models, allows fathoming phenomena that could be measured in biological brains only under severe difficulties. In particular, recent studies showed that activity dependent changes of neuronal input resistance can prevent a network from local "explosions" of activity, which otherwise could lead to a complete breakdown of network operation. The same property of neurons also causes a network to remain active when external excitation is switched off. This is an important property of brains, the neuronal mechanisms of which are still widely unknown. [source] Investigating the potential of Bacillus subtilis ,-amylase as a pressure-temperature-time indicator for high hydrostatic pressure pasteurization processesBIOTECHNOLOGY PROGRESS, Issue 4 2009Tara Grauwet Abstract The potential of Bacillus subtilis ,-amylase (BSA) as a pressure-temperature-time indicator (pTTI) for high pressure pasteurization processing (400,600 MPa; Ti 10,40°C; 1,15 min) was investigated. A stepwise approach was followed for the development of an enzyme-based, extrinsic, isolated pTTI. First, based on literature data on the pressure stability, BSA was selected as a candidate indicator. Next to the accuracy and ease of the measurement of the indicator's response (residual activity) to the pressure treatment, the storage and handling stability of BSA at atmospheric pressure was verified. Second, the stability of BSA at a constant temperature (T) and time in function of pressure (p) was investigated. Solvent engineering was used to shift the inactivation window of BSA in the processing range of interest. Third, the enzyme (1 g/L BSA,MES 0.05 M pH 5.0) was kinetically calibrated under isobaric-isothermal conditions. Time dependent changes in activity could be modeled best by a first-order model. Except for low pressures and high temperatures, a synergistic effect between pressure and temperature could be observed. Based on the model selected to describe the combined p,T-dependency of the inactivation rate constant, an elliptically shaped isorate contour plot could be constructed, illustrating the processing range where BSA can be used to demonstrate temperature gradients. Fourth, the validity of the kinetic model was tested successfully under dynamic conditions similar to those used in food industry. Finally, the indicator was found suitable to demonstrate nonuniformity in two-sectional planes of a vertical, single vessel system. © 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009 [source] |