Dependent Alcohol Dehydrogenase (dependent + alcohol_dehydrogenase)

Distribution by Scientific Domains


Selected Abstracts


Evaluating Enzyme Cascades for Methanol/Air Biofuel Cells Based on NAD+ -Dependent Enzymes

ELECTROANALYSIS, Issue 7-8 2010

Abstract Previous work by the group has entailed encapsulating enzymes in polymeric micelles at bioelectrode surfaces by utilizing hydrophobically modified Nafion membranes, which are modified in order to eliminate the harsh acidity of Nafion while tailoring the size of the polymer micelles to optimize for the encapsulation of an individual enzyme. This polymer encapsulation has been shown to provide high catalytic activity and enzyme stability. In this study, we employed this encapsulation technique in developing a methanol/air biofuel cell through the combined immobilization of NAD+ -dependent alcohol dehydrogenase (ADH), aldehyde dehydrogenase (AldDH) and formate dehydrogenase (FDH) within a tetrabutylammonium bromide (TBAB) modified Nafion to oxidize methanol to carbon dioxide with poly(methylene green) acting as the NADH electrocatalyst electropolymerized on the surface of the electrode. The methanol biofuel/air cell resulted in a maximum power density of 261±7.6,,W/cm2 and current density of 845±35.5,,A/cm2. This system was characterized for the effects of degree of oxidation, temperature, pH, and concentration of fuel and NAD. [source]


Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family

FEBS JOURNAL, Issue 22 2002
Carol Larroy
A new NADP(H)-dependent alcohol dehydrogenase (the YCR105W gene product, ADHVII) has been identified in Saccharomyces cerevisiae. The enzyme has been purified to homogeneity and found to be a homodimer of 40 kDa subunits and a pI of 6.2,6.4. ADHVII shows a broad substrate specificity similar to the recently characterized ADHVI (64% identity), although they show some differences in kinetic properties. ADHVI and ADHVII are the only members of the cinnamyl alcohol dehydrogenase family in yeast. Simultaneous deletion of ADH6 and ADH7 was not lethal for the yeast. Both enzymes could participate in the synthesis of fusel alcohols, ligninolysis and NADP(H) homeostasis. [source]


Crystallization and preliminary crystallographic analysis of Gre2p, an NADP+ -dependent alcohol dehydrogenase from Saccharomyces cerevisiae

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2010
Klaus Breicha
Gre2p [Genes de respuesta a estres (stress-response gene)] from Saccharomyces cerevisiae is a monomeric enzyme of 342 amino acids with a molecular weight of 38.1,kDa. The enzyme catalyses both the stereospecific reduction of keto compounds and the oxidation of various hydroxy compounds and alcohols by the simultaneous consumption of the cofactor NADPH and formation of NADP+. Crystals of a Gre2p complex with NADP+ were grown using PEG 8000 as a precipitant. They belong to the monoclinic space group P21. The current diffraction resolution is 3.2,Å. In spite of the monomeric nature of Gre2p in solution, packing and self-rotation calculations revealed the existence of two Gre2p protomers per asymmetric unit related by a twofold noncrystallographic axis. [source]


Crystallization and preliminary X-ray analysis of NADP(H)-dependent alcohol dehydrogenases from Saccharomyces cerevisiae and Rana perezi

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2003
Eva Valencia
Different crystal forms diffracting to high resolution have been obtained for two NADP(H)-dependent alcohol dehydrogenases, members of the medium-chain dehydrogenase/reductase superfamily: ScADHVI from Saccharomyces cerevisiae and ADH8 from Rana perezi. ScADHVI is a broad-specificity enzyme, with a sequence identity lower than 25% with respect to all other ADHs of known structure. The best crystals of ScADHVI diffracted beyond 2.8,Å resolution and belonged to the trigonal space group P3121 (or to its enantiomorph P3221), with unit-cell parameters a = b = 102.2, c = 149.7,Å, , = 120°. These crystals were produced by the hanging-drop vapour-diffusion method using ammonium sulfate as precipitant. Packing considerations together with the self-rotation function and the native Patterson map seem to indicate the presence of only one subunit per asymmetric unit, with a volume solvent content of about 80%. ADH8 from R. perezi is the only NADP(H)-dependent ADH from vertebrates characterized to date. Crystals of ADH8 obtained both in the absence and in the presence of NADP+ using polyethylene glycol and lithium sulfate as precipitants diffracted to 2.2 and 1.8,Å, respectively, using synchrotron radiation. These crystals were isomorphous, space group C2, with approximate unit-cell parameters a = 122, b = 79, c = 91,Å, , = 113° and contain one dimer per asymmetric unit, with a volume solvent content of about 50%. [source]