Dental Stones (dental + stone)

Distribution by Scientific Domains


Selected Abstracts


Change in supporting tissue following loss of a permanent maxillary incisor in children

DENTAL TRAUMATOLOGY, Issue 6 2007
Helen D. Rodd
Abstract,,, Alveolar bone resorption is an inevitable consequence of tooth loss and may be detrimental to long-term dental aesthetics and function. The aim of the present study was to quantify the degree of tissue resorption following the loss of a permanent incisor in a young population. The study group comprised 11 boys and five girls who all required the extraction of a permanent maxillary central incisor due to trauma-related sequelae. Mean age at tooth loss was 10.8 years. Upper alginate impressions were taken at regular intervals following tooth loss and were cast in yellow dental stone. Study models were sectioned longitudinally through the mid-point of both the maxillary incisor socket and the contra-lateral incisor to provide a thin plaster section. Digital photographs were acquired of the edentulous (A1) and dentate (A2) surfaces of this section and image analysis software was employed to quantify the surface area of both A1 and A2. At 3 months postextraction, mean A1 was 15.7% less than mean A2. By 6 months mean A1 had further reduced and was 25.3% less than that of the corresponding dentate alveolus. However, at subsequent time intervals following tooth extraction (>6 months), tissue loss appeared to stabilise with an overall reduction in tissue area remaining at 22%. This reduction in supporting tissue area was found to be highly statistically significant (P = 0.002, anova). Furthermore, girls appeared to have an overall greater degree of tissue loss than boys (P = 0.015). Further research is indicated to explore factors influencing the degree of tissue loss following incisor extraction and the benefit of therapeutic interventions in limiting this resorption. [source]


Physical properties and compatibility with dental stones of current alginate impression materials

JOURNAL OF ORAL REHABILITATION, Issue 11 2004
H. Murata
summary, This study examined physical properties and compatibility with dental stones of two types of alginate impression materials. Five powder-type alginate impression materials (Alginoplast EM, Aroma Fine, Algiace Z, Coe Alginate, Jeltrate Plus) and a paste-type alginate impression material (Tokuso AP-1) were used. The dynamic viscosity immediately after mixing was measured by means of a controlled-stress rheometer. The gelation times were determined according to Japanese Industrial Standards (JIS) T6505, and recovery from deformation, strain in compression and compressive strength were determined according to the International Organization for Standardization (ISO) specification 1563. Detail reproduction and surface roughness of type III dental stones (New Plastone, New Sunstone) and a type IV dental stone (Die Stone) were evaluated using a ruled test block as specified in the ISO specification 1563 and a profilometer, respectively. The alginate impression materials evaluated in this study were all in compliance with the ISO specification 1563 and JIS T6505. The alginate impression materials had similar mechanical properties after gelation, whilst a wide range of dynamic viscosity immediately after being mixed, gelation times and compatibility with dental stones were found among the materials. The paste-type material had a higher dynamic viscosity and a shorter gelation time than the powder-type materials. The best surface quality was obtained with the paste-type material/type III dental stone cast combinations. The materials should be selected in consideration of initial flow, setting characteristics and compatibility with dental stones. The results suggested that a paste-type material would better meet the requirements of an alginate impression material. [source]


The effect of disinfectants on the properties of dental gypsum, part 2: Surface properties

JOURNAL OF PROSTHODONTICS, Issue 4 2002
Khalid M. Abdelaziz PhD
Purpose This study is part of an ongoing investigation to evaluate the surface properties of dental stones mixed with disinfection solutions, and to determine the effect of adding gum arabic and calcium hydroxide on the same properties. Materials and Methods Aqueous solutions of 2 chemical disinfectants were used in mixing 2 types of dental stones (type III and type V). These dental stones were modified further by adding 1% gum arabic and 0.132% calcium hydroxide to their hemihydrate powders before mixing. Five specimens prepared from each type of dental stone were classified into 7 groups according to the hemihydrate powder modification and mixing liquid/powder ratio. Surface roughness was tested by 2-dimensional profilometery and scanning electron microscopy (SEM). Knoop hardness testing was carried out, and detail reproduction was assessed using ADA specification 25 in addition to SEM and 3-dimensional profilometer studies. Results Dental stones mixed with chemical disinfectants showed higher average roughness (Ra) values than those of the controls. However, adding gum arabic and calcium hydroxide to the hemihydrate powders before mixing restored values to the level of the control. The additives seemed to have a role in the improvement of surface hardness. There was no significant difference between the experimental and the control group in the terms of detail reproduction. Conclusions Using SEM, 3-dimensional profilometry, and ADA testing methods, we found that the surface roughness of stone casts was adversely affected by using the disinfectant solutions as mixing water substitutes. Gum arabic and calcium hydroxide additives can yield a harder stone surface without compromising other surface properties. [source]


Physical properties and compatibility with dental stones of current alginate impression materials

JOURNAL OF ORAL REHABILITATION, Issue 11 2004
H. Murata
summary, This study examined physical properties and compatibility with dental stones of two types of alginate impression materials. Five powder-type alginate impression materials (Alginoplast EM, Aroma Fine, Algiace Z, Coe Alginate, Jeltrate Plus) and a paste-type alginate impression material (Tokuso AP-1) were used. The dynamic viscosity immediately after mixing was measured by means of a controlled-stress rheometer. The gelation times were determined according to Japanese Industrial Standards (JIS) T6505, and recovery from deformation, strain in compression and compressive strength were determined according to the International Organization for Standardization (ISO) specification 1563. Detail reproduction and surface roughness of type III dental stones (New Plastone, New Sunstone) and a type IV dental stone (Die Stone) were evaluated using a ruled test block as specified in the ISO specification 1563 and a profilometer, respectively. The alginate impression materials evaluated in this study were all in compliance with the ISO specification 1563 and JIS T6505. The alginate impression materials had similar mechanical properties after gelation, whilst a wide range of dynamic viscosity immediately after being mixed, gelation times and compatibility with dental stones were found among the materials. The paste-type material had a higher dynamic viscosity and a shorter gelation time than the powder-type materials. The best surface quality was obtained with the paste-type material/type III dental stone cast combinations. The materials should be selected in consideration of initial flow, setting characteristics and compatibility with dental stones. The results suggested that a paste-type material would better meet the requirements of an alginate impression material. [source]


The effect of disinfectants on the properties of dental gypsum, part 2: Surface properties

JOURNAL OF PROSTHODONTICS, Issue 4 2002
Khalid M. Abdelaziz PhD
Purpose This study is part of an ongoing investigation to evaluate the surface properties of dental stones mixed with disinfection solutions, and to determine the effect of adding gum arabic and calcium hydroxide on the same properties. Materials and Methods Aqueous solutions of 2 chemical disinfectants were used in mixing 2 types of dental stones (type III and type V). These dental stones were modified further by adding 1% gum arabic and 0.132% calcium hydroxide to their hemihydrate powders before mixing. Five specimens prepared from each type of dental stone were classified into 7 groups according to the hemihydrate powder modification and mixing liquid/powder ratio. Surface roughness was tested by 2-dimensional profilometery and scanning electron microscopy (SEM). Knoop hardness testing was carried out, and detail reproduction was assessed using ADA specification 25 in addition to SEM and 3-dimensional profilometer studies. Results Dental stones mixed with chemical disinfectants showed higher average roughness (Ra) values than those of the controls. However, adding gum arabic and calcium hydroxide to the hemihydrate powders before mixing restored values to the level of the control. The additives seemed to have a role in the improvement of surface hardness. There was no significant difference between the experimental and the control group in the terms of detail reproduction. Conclusions Using SEM, 3-dimensional profilometry, and ADA testing methods, we found that the surface roughness of stone casts was adversely affected by using the disinfectant solutions as mixing water substitutes. Gum arabic and calcium hydroxide additives can yield a harder stone surface without compromising other surface properties. [source]