Home About us Contact | |||
Density Wave (density + wave)
Selected AbstractsHTSC cuprate phase diagram using a modified Boson,Fermion,Gossamer model describing competing orders, a quantum critical point and possible resonance complexINTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 15 2009Richard H. Squire Abstract There has been considerable effort expended toward understanding high temperature superconductors (HTSC), and more specifically the cuprate phase diagram as a function of doping level. Yet, the only agreement seems to be that HTSC is an example of a strongly correlated material where Coulomb repulsion plays a major role. This manuscript proposes a model based on a Feshbach resonance pairing mechanism and competing orders. An initial BCS-type superconductivity at high doping is suppressed in the two particle channel by a localized preformed pair (PP) (Nozieres and Schmitt-Rink, J Low Temp Phys, 1985, 59, 980) (circular density wave) creating a quantum critical point. As doping continues to diminish, the PP then participates in a Feshbach resonance complex that creates a new electron (hole) pair that delocalizes and constitutes HTSC and the characteristic dome (Squire and March, Int J Quantum Chem, 2007, 107, 3013; 2008, 108, 2819). The resonant nature of the new pair contributes to its short coherence length. The model we propose also suggests an explanation (and necessity) for an experimentally observed correlated lattice that could restrict energy dissipation to enable the resonant Cooper pair to move over several correlation lengths, or essentially free. The PP density wave is responsible for the pseudogap as it appears as a "localized superconductor" since its density of states and quasiparticle spectrum are similar to those of a superconductor (Peierls,Fröhlich theory), but with no phase coherence between the PP. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009 [source] Can the Fulleride superconducting model (FSM) be extended?INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2005R. H. Squire Abstract The Fulleride superconducting model (FSM) is based on the existence of an electron (or Cooper) pair density wave localized on a single Fulleride molecule. Interaction of the wave with itinerant electrons at low temperature creates a pseudo-gap above the superconducting state. In addition, the interaction of the electron and the bosonic pair create a net attraction between two Fulleride molecules resulting in an intermolecular Cooper pair. This pairing interaction appears to have all the aspects of a spin liquid. This study extends the model to high-temperature superconductors and suggests that superconductivity may exist with considerably fewer molecules than in BCS theory. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005 [source] Invariant manifolds, phase correlations of chaotic orbits and the spiral structure of galaxiesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006N. Voglis ABSTRACT In the presence of a strong m= 2 component in a rotating galaxy, the phase-space structure near corotation is shaped to a large extent by the invariant manifolds of the short-period family of unstable periodic orbits terminating at L1 or L2. The main effect of these manifolds is to create robust phase correlations among a number of chaotic orbits large enough to support a spiral density wave outside corotation. The phenomenon is described theoretically by soliton-like solutions of a Sine,Gordon equation. Numerical examples are given in an N -body simulation of a barred spiral galaxy. In these examples, we demonstrate how the projection of unstable manifolds in configuration space reproduces essentially the entire observed bar,spiral pattern. [source] The properties of the CDW phase in the weak coupling anharmonic Holstein,Hubbard modelPHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 1 2006P. GrzybowskiArticle first published online: 2 JAN 200 Abstract The anharmonic Holstein,Hubbard Hamiltonian in the case of weak effective electron,electron attraction is studied. To deal with anharmonicity of phonons, variational canonical transformations are used to derive an effective electron Hamiltonian. The properties of the charge density wave (CDW) phase, for half-filling, are analyzed using this effective Hamiltonian. In particular, the critical temperatures, gap function, order parameter and gap ratio are calculated. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Dielectric properties of thallium gallium diselenide layered crystal in the incommensurate phaseCRYSTAL RESEARCH AND TECHNOLOGY, Issue 9 2005entürk Abstract The dielectric measurements of the layered crystal were studied in temperature range of successive phase transitions. The measurements revealed that the phase transition occurred in 242 K is an incommensurate phase transition. When the sample is annealed at a stabilized temperature in the incommensurate phase, a remarkable memory effect has been observed on cooling run. The mechanism of the memory effect in the incommensurate phase of the semiconducting ferroelectric TlGaSe2 can be interpreted in the frame of the theory of defect density waves. This theory claims that the memory effect is the result of pinning of the incommensurate structure by the lattice inhomogeneities. With decreasing the annealing temperature the phase transition temperature shifts to lower temperatures gradually. Moreover, the peak intensities also increase gradually. In addition to these effects, the phase transition temperature shifts to lower temperatures with increasing annealing time. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Global m= 1 instabilities and lopsidedness in disc galaxiesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008V. Dury ABSTRACT Lopsidedness is common in spiral galaxies. Often, there is no obvious external cause, such as an interaction with a nearby galaxy, for such features. Alternatively, the lopsidedness may have an internal cause, such as a dynamical instability. In order to explore this idea, we have developed a computer code that searches for self-consistent perturbations in razor-thin disc galaxies and performed a thorough mode-analysis of a suite of dynamical models for disc galaxies embedded in an inert dark matter halo with varying amounts of rotation and radial anisotropy. Models with two equal-mass counter-rotating discs and fully rotating models both show growing lopsided modes. For the counter-rotating models, this is the well-known counter-rotating instability, becoming weaker as the net rotation increases. The m= 1 mode of the maximally rotating models, on the other hand, becomes stronger with increasing net rotation. This rotating m= 1 mode is reminiscent of the eccentricity instability in near-Keplerian discs. To unravel the physical origin of these two different m= 1 instabilities, we studied the individual stellar orbits in the perturbed potential and found that the presence of the perturbation gives rise to a very rich orbital behaviour. In the linear regime, both instabilities are supported by aligned loop orbits. In the non-linear regime, other orbit families exist that can help support the modes. In terms of density waves, the counter-rotating m= 1 mode is due to a purely growing Jeans-type instability. The rotating m= 1 mode, on the other hand, grows as a result of the swing amplifier working inside the resonance cavity that extends from the disc centre out to the radius where non-rotating waves are stabilized by the model's outwardly rising Q profile. [source] Stationary models for fast and slow logarithmic spiral patterns in disc galaxiesMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2002Yu-Qing Lou A recent wavelet analysis on multiwavelength image data of the nearby spiral galaxy NGC 6946 revealed a multi-arm spiral structure that persists well into the outer differentially rotating disc region. The extended spiral arms in polarized radio-continuum emission and in red light appear interlaced with each other, while the spiral arms in emissions of total radio continuum, of H, from H ii regions, and of neutral hydrogen all trace the red-light spiral arms, although to a somewhat lesser extent. The key issue now becomes how to sustain extended slow magnetohydrodynamic (MHD) density wave features in a thin magnetized disc with a flat rotation curve. We describe here a theoretical model to examine stationary non-axisymmetric logarithmic spiral configurations constructed from a background equilibrium of a magnetized singular isothermal disc (MSID) with a flat rotation curve and with a non-force-free azimuthal magnetic field. It is found analytically that two types of stationary spiral MSID configurations may exist, physically corresponding to the two possibilities of fast and slow spiral MHD density waves. Such stationary MHD density waves are possible only at proper MSID rotation speeds. For the fast MSID configuration, logarithmic spiral enhancements of magnetic field and gas density are either in phase in the tight-winding regime or shifted with a spatial phase difference ,,/2 for open spiral structures. For the slow MSID configuration, logarithmic spiral enhancements of magnetic field and gas density are either out of phase in the tight-winding regime or shifted with a spatial phase difference for open spiral structures and persist in a flat rotation curve. For NGC 6946, several pertinent aspects of the slow MSID scenario with stationary logarithmic spiral arms are discussed. The two exact solutions can be also utilized to test relevant numerical MHD codes. [source] |