Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Dendrites

  • apical dendrite
  • basal dendrite
  • cell dendrite
  • distal dendrite
  • neuronal dendrite
  • primary dendrite
  • proximal dendrite
  • purkinje cell dendrite

  • Terms modified by Dendrites

  • dendrite development
  • dendrite formation
  • dendrite growth
  • dendrite morphology

  • Selected Abstracts

    Normal dendrite growth in Drosophila motor neurons requires the AP-1 transcription factor

    Cortnie L. Hartwig
    Abstract During learning and memory formation, information flow through networks is regulated significantly through structural alterations in neurons. Dendrites, sites of signal integration, are key targets of activity-mediated modifications. Although local mechanisms of dendritic growth ensure synapse-specific changes, global mechanisms linking neural activity to nuclear gene expression may have profound influences on neural function. Fos, being an immediate-early gene, is ideally suited to be an initial transducer of neural activity, but a precise role for the AP-1 transcription factor in dendrite growth remains to be elucidated. Here we measure changes in the dendritic fields of identified Drosophila motor neurons in vivo and in primary culture to investigate the role of the immediate-early transcription factor AP-1 in regulating endogenous and activity-induced dendrite growth. Our data indicate that (a) increased neural excitability or depolarization stimulates dendrite growth, (b) AP-1 (a Fos, Jun hetero-dimer) is required for normal motor neuron dendritic growth during development and in response to activity induction, and (c) neuronal Fos protein levels are rapidly but transiently induced in motor neurons following neural activity. Taken together, these results show that AP-1 mediated transcription is important for dendrite growth, and that neural activity influences global dendritic growth through a gene-expression dependent mechanism gated by AP-1. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source]

    Translation of an integral membrane protein in distal dendrites of hippocampal neurons

    Jeffrey C. Grigston
    Abstract Maintenance of synaptic plasticity requires protein translation. Because changes in synaptic strength are regulated at the level of individual synapses, a mechanism is required for newly translated proteins to specifically and persistently modify only a subset of synapses. Evidence suggests this may be accomplished through local translation of proteins at or near synapses in response to plasticity-inducing patterns of activity. A number of proteins important for synaptic function are integral membrane proteins, which require a specialized group of organelles, proteins and enzymatic activities for proper synthesis. Dendrites appear to contain machinery necessary for the proper production of these proteins, and mRNAs for integral membrane proteins have been found localized to dendrites. Experiments are described that investigate the local translation of membrane proteins in the dendrites of cultured rat hippocampal neurons, using fluorescence recovery after photobleaching. Neurons were transfected with cDNAs encoding a fluorescently labeled transmembrane protein, TGN-38. Under conditions where the transport of this reporter construct was inhibited, the appearance of newly synthesized protein was observed via fluorescent microscopy. The dendritic translation of this protein required activation of glutamate receptors. The results demonstrate a functional capacity for activity-dependent synthesis of integral membrane proteins for distal dendrites in hippocampal neurons. [source]

    Apical vulnerability to dendritic retraction in prefrontal neurones of ageing SAMP10 mouse: a model of cerebral degeneration

    A. Shimada
    The SAMP10 mouse is a model of accelerated ageing in which senescence is characterized by age-related atrophy of the cerebral cortex and limbic structures, poor learning and memory task performance with depressive behaviour and cholinergic and dopaminergic alterations. Here we studied age-related changes in the dendritic arbors and spine density of pyramidal cells in the medial prefrontal cortex of SAMP10 mice using a quantitative Golgi method. Dendrites of prefrontal neurones gradually retracted with ageing towards the soma with the relative preservation of overall complexity. Apical dendrites were much more severely affected than basal dendrites. The combined length of the apical dendrites and spine density were decreased by 45% and 55%, respectively, in mice at 12 months, compared with mice at 3 months of age. Immunohistochemical and immunoblot analyses indicated that expression of microtubule-associated protein (MAP) 2, a marker of dendrites, decreased in an age-related manner not only in the anterior cortex but also in the posterior cortex and olfactory structures in SAMP10 mice. Decreased expression of MAP2 mRNA caused the decrease in MAP2 protein expression. These results suggest that retraction of apical, but not of basal dendrites, with a loss of spines in prefrontal neurones, appears to be responsible for poor learning and memory performance in aged SAMP10 mice. It is also suggested that age-related dendritic retraction occurs in a wide area including the entire cerebral cortex and olfactory structures. [source]

    High Magnetic Field Effect on the Growth of 3-Dimensional Silver Dendrites.

    CHEMINFORM, Issue 15 2003
    Akio Katsuki
    Abstract For Abstract see ChemInform Abstract in Full Text. [source]

    A New Photothermal Therapeutic Agent: Core-Free Nanostructured AuxAg1,x Dendrites

    Kuo-Wei Hu
    Abstract A new class of AuxAg1,x nanostructures with dendrite morphology and a hollow interior were synthesized by using a replacement reaction between Ag dendrites and an aqueous solution of HAuCl4. The Ag nanostructured dendrites were generated by the reaction of AgNO3 with ascorbic acid in a methanol/water system. The dendrites resemble a coral shape and are built up of many stems with an asymmetric arrangement. Each stem is approximately 400,nm in length and 65,nm in diameter. The bimetallic composition of AuxAg1,x can be tuned by the addition of different amounts of HAuCl4 to the Ag dendritic solution. The hollowing process resulted in tubular structures with a wall thickness of 10.5,nm in Au0.3Ag0.7 dendrites. The UV/Vis spectra indicate that the strongest NIR absorption among the resulting hollow AuxAg1,x dendrites was in Au0.3Ag0.7. The MTT assay was conducted to evaluate the cytotoxicity of Ag dendrites, hollow Au0.06Ag0.94 and Au0.3Ag0.7 dendrites, and Au nanorods. It was found that hollow Au0.06Ag0.94 and Au0.3Ag0.7 dendrites exhibited good biocompatibility, while both Ag dendrites and Au nanorods showed dose-dependent toxicity. Because of absorption in the NIR region, hollow Au0.3Ag0.7 dendrites were used as photothermal absorbers for destroying A549 lung cancer cells. Their photothermal performance was compared to that of Au nanorod photothermal therapeutic agents. As a result, the particle concentration and laser power required for efficient cancer cell damage were significantly reduced for hollow Au0.3Ag0.7 dendrites relative to those used for Au nanorods. The hollow Au0.3Ag0.7 nanostructured dendrites show potential in photothermolysis for killing cancer cells. [source]

    Secreted TARSH regulates olfactory mitral cell dendritic complexity

    Ting-Wen Cheng
    Abstract Olfactory sensory neurons synapse with mitral cells to form stereotyped connections in the olfactory bulb (OB). Mitral cell apical dendrites receive input from olfactory sensory neurons expressing the same odorant receptor. During development, this restricted dendritic targeting of mitral cells is achieved through eliminating elaborated dendritic trees to a single apical dendrite. Through a genome-wide microarray screen, we identified TARSH (Target of NESH SH3) as a transiently expressed molecule in mitral cells during the dendritic refinement period. TARSH expression is restricted to pyramidal neurons along the main olfactory pathway, including the anterior olfactory nucleus and piriform cortex. The dynamic TARSH expression is not altered when odor-evoked activity is blocked by naris closure or in AC3 knockout mice. We also demonstrate that TARSH is a secreted protein. In dissociated OB cultures, secreted TARSH promotes the reduction of mitral cell dendritic complexity and restricts dendritic branching and outgrowth of interneurons. Dendritic morphological changes were also observed in mitral cells overexpressing TARSH themselves. We propose that TARSH is part of the genetic program that regulates mitral cell dendritic refinement. [source]

    A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing

    Richardson N. Leăo
    Abstract Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na+ channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na+ imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na+ clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na+ gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K+ currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a ,dual' firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials). [source]

    Effects of variability in anatomical reconstruction techniques on models of synaptic integration by dendrites: a comparison of three internet archives

    Tibor Szilágyi
    Abstract The first step in building a realistic computational neuron model is to produce a passive electrical skeleton on to which active conductances can be grafted. For this, anatomically accurate morphological reconstructions of the desired cell type are required. In this study compartmental models were used to compare from a functional perspective three on-line archives of rat hippocampal CA1 pyramidal cell morphologies. The topological organization of cells was found to be similar for all archives, but several morphometric differences were observed. The three-dimensional size of the cells, the diameter and tortuosity of dendrites, and the electrotonic length of the main apical dendrite and of the branches in stratum lacunosum moleculare were dissimilar. The experimentally measured kinetics of somatically recorded inhibitory postsynaptic currents evoked in the stratum lacunosum moleculare (data from the literature) could be reproduced only using the archives that contained cells with an electrotonically short main apical dendrite. In the amplitude attenuation of the simulated postsynaptic currents and the voltage escape from the command potential under voltage clamp conditions, a two- to three-fold difference was observed among archives. Upon activation of a single model synapse on distal branches, cells with low dendritic diameter showed a voltage escape larger than 15 mV. The diameter of the dendrites influenced greatly the results, emphasizing the importance of methods that allow an accurate measurement of this parameter. Our results indicate that there are functionally significant differences in the morphometric data available in different archives even if the cell type, brain region and species are the same. [source]

    Dynamics of Ca2+ and Na+ in the dendrites of mouse cerebellar Purkinje cells evoked by parallel fibre stimulation

    Akinori Kuruma
    Abstract Ca2+ and Na+ play important roles in neurons, such as in synaptic plasticity. Their concentrations in neurons change dynamically in response to synaptic inputs, but their kinetics have not been compared directly. Here, we show the mechanisms and dynamics of Ca2+ and Na+ transients by simultaneous monitoring in Purkinje cell dendrites in mouse cerebellar slices. High frequency parallel fibre stimulation (50 Hz, 3,50-times) depolarized Purkinje cells, and Ca2+ transients were observed at the anatomically expected sites. The magnitude of the Ca2+ transients increased linearly with increasing numbers of parallel fibre inputs. With 50 stimuli, Ca2+ transients lasted for seconds, and the peak [Ca2+] reached ,100 µm, which was much higher than that reported previously, although it was still confined to a part of the dendrite. In contrast, Na+ transients were sustained for tens of seconds and diffused away from the stimulated site. Pharmacological interventions revealed that Na+ influx through ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and Ca2+ influx through P-type Ca channels were essential players, that AMPA receptors did not operate as a Ca2+ influx pathway and that Ca2+ release from intracellular stores through inositol trisphosphate receptors or ryanodine receptors did not contribute greatly to the large Ca2+ transients. [source]

    Innervation of interneurons immunoreactive for VIP by intrinsically bursting pyramidal cells and fast-spiking interneurons in infragranular layers of juvenile rat neocortex

    Jochen F. Staiger
    Abstract Cortical columns contain specific neuronal populations with characteristic sets of connections. This wiring forms the structural basis of dynamic information processing. However, at the single-cell level little is known about specific connectivity patterns. We performed experiments in infragranular layers (V and VI) of rat somatosensory cortex, to clarify further the input patterns of inhibitory interneurons immunoreactive (ir) for vasoactive intestinal polypeptide (VIP). Neurons in acute slices were electrophysiologically characterized using whole-cell recordings and filled with biocytin. This allowed us to determine their firing pattern as regular-spiking, intrinsically bursting and fast-spiking, respectively. Biocytin was revealed histochemically and VIP immunohistochemically. Sections were examined for contacts between the axons of the filled neurons and the VIP-ir targets. Twenty pyramidal cells and five nonpyramidal (inter)neurons were recovered and sufficiently stained for further analysis. Regular-spiking pyramidal cells displayed no axonal boutons in contact with VIP-ir targets. In contrast, intrinsically bursting layer V pyramidal cells showed four putative single contacts with a proximal dendrite of VIP neurons. Fast-spiking interneurons formed contacts with two to six VIP neurons, preferentially at their somata. Single as well as multiple contacts on individual target cells were found. Electron microscopic examinations showed that light-microscopically determined contacts represent sites of synaptic interactions. Our results suggest that, within infragranular local cortical circuits, (i) fast-spiking interneurons are more likely to influence VIP cells than are pyramidal cells and (ii) pyramidal cell input probably needs to be highly convergent to fire VIP target cells. [source]

    Distribution of glycine receptor subunits on primate retinal ganglion cells: a quantitative analysis

    Bin Lin
    Abstract This study investigates the distribution of inhibitory neurotransmitter receptors on sensory neurons. Ganglion cells in the retina of a New World monkey, the common marmoset Callithrix jacchus, were injected with Lucifer yellow and Neurobiotin and subsequently processed with antibodies against one (,1), or against all subunits, of the glycine receptor, or against the anchoring protein gephyrin. Immunoreactive (IR) puncta representing glycine receptor or gephyrin clusters were found on the proximal and the distal dendrites of all ganglion cell types investigated. For both parasol and midget cells, the density of receptor clusters was greater on distal than proximal dendrites for all antibodies tested. In parasol cells the average density for the ,1 subunit of the glycine receptor was 0.087 IR puncta/µm of dendrite, and for all subunits it was 0.119 IR puncta/µm of dendrite. Thus, the majority of glycine receptors on parasol cells contain the ,1 subunit. For parasol cells, we estimated an average of 1.5 glycinergic synapses/100 µm2 dendritic membrane on proximal dendrites and about 9.4 glycinergic synapses/100 µm2 on distal dendrites. The segregation of receptors to the distal dendrites appears to be a common feature of inhibitory neurotransmitter input to parasol and midget cells, and might be associated with the receptive field surround mechanism. [source]

    Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys

    Chin-You Hsu
    Effects of Co content on microstructures and hot hardness of a new high-entropy alloy system, AlCoxCrFeMo0.5Ni (x,=,0.5 to 2.0) were investigated. As cobalt content increases, the microstructure changes from dendrite to polygrain type and the constituent phases change from BCC,+,, at x,=,0.5 to BCC,+,FCC,+,, at x,=,2.0. The alloy hardness varies from Hv 788 at x,=,0.5 to Hv 596 at x,=,2.0. This can be explained with the relative amount of hard , phase, medium hard BCC phase and soft FCC phase. All the AlCoxCrFeMo0.5Ni alloys possess higher hardness level than that of Ni-based superalloys In 718/In 718 H from room temperature to 1273,K. They obey the Westbrook equation presenting the normal heating behavior. Both alloys of x,=,0.5 and 1.0 exhibit a transition temperature higher than that of Co-based alloy T-800 by about 200,K. They also have a high hot hardness of Hv 347 at 1273,K, which is higher than those of In 718 and In718 H by Hv 220. The strengthening mechanism for their superiority is proposed. The AlCoxCrFeMo0.5Ni alloy system has great potential in high-temperature applications. [source]

    Enhanced Ductility of Dendrite-Ultrafine Eutectic Composite Fe3B Alloy Prepared by a Self-Propagating High-Temperature Synthesis,

    Licai Fu
    The bulk dendrite-ultrafine eutectic composite Fe3B alloy was prepared by a self-propagating high-temperature synthesis. This technique is convenient, low cost, and capable of being scaled up for processing bulk nano/ultrafine-structured materials. The Fe3B alloy is composed of a micrometer-sized dendrite dispersed in an ultrafine laminar eutectic matrix and exhibits both high strength and large ductility in compressive tests. [source]

    Morphology and Roughness of Silver Deposit Formed by Cementation at Various Temperatures in Pure Sulfuric Acid

    Abstract The morphology and surface roughness of silver (Ag) deposit formed on metallic copper (Cu) by cementation conducted in a 0.5M H2SO4 solution was investigated at various temperatures above 25°. The influence of the presence or absence of oxygen (O2) on Ag morphology was studied at an initial Ag+ concentration of 20,mg/dm3. An analysis of distribution diagrams of the surface height calculated from scanning-electron-microscope (SEM) top-view images was performed. The cementation reaction results in a non-homogeneous Ag deposit formed on the surface independently of the presence or absence of O2 in solution. The Ag deposit covers Cu mainly with a uniform and compact layer with separated germs of predendrites, but also a huge ,fern-leaf-shaped' and ,lycopodium-twigs-shaped' dendrites appear occasionally on the surface. The presence of O2 in the system and temperature do not affect significantly the morphology of Ag dendrite as well as a deposit formed on the smooth part of the surface. The roughness of surface with Ag cement varies with temperature only under aerobic conditions where the enhanced Cu corrosion increases the size of anodic sites. The results obtained from the surface-height-distribution diagrams constructed for anaerobic conditions showed that the reaction between Cu+ and Ag+ does not start in the bulk of the solution even at the highest studied temperature. [source]

    Surfactant-Assisted Growth of Novel PbS Dendritic Nanostructures via Facile Hydrothermal Process,

    ADVANCED MATERIALS, Issue 20 2003
    D. Kuang
    3D PbS dendritic nanostructures (see Figure) have been fabricated by a facile hydrothermal method in the presence of N -cetyl- N,N,N -trimethyl-ammonium bromide (CTAB). Both CTAB and thiourea play important roles in the formation of well-defined PbS dendrites. X-ray diffraction, electron diffraction, and high-resolution transmission electron microscopy results show that the PbS nanostructure is a 3D dendrite of a single crystal. [source]

    Peripheral synapses and giant neurons in whip spiders

    Rainer Foelix
    Among invertebrates the synapses between neurons are generally restricted to ganglia, i.e., to the central nervous system (CNS). As an exception, synapses occur in the sensory nerves of arachnid legs, indicating that some nervous integration is already taking place far out in the periphery. In the antenniform legs of whip spiders (Amblypygi), a very special synaptic circuit is present. These highly modified legs contain several large interneurons (giant neurons) that receive mechanosensory input from 700,1,500 tarsal bristles. Some of the sensory cell axons contact a giant neuron at its short, branched dendrite, a few at the soma, but most synapse onto the long giant axon. The fine structure of these synapses resembles that of typical chemical synapses in other arthropods. Although thousands of sensory fibers converge on a single giant neuron, there is no reduction in the actual number of sensory fibers, because these afferent fibers continue their course to the CNS after having made several en passant synapses onto the giant neuron. Touching a single tarsal bristle is sufficient to elicit action potentials in a giant neuron. Owing to the large diameter of the giant axon (10,20 ,m), the action potentials reach the CNS within 55 ms, at conduction velocities of up to 7 m/s. However, mechanical stimulation of the tarsal bristles does not elicit a fast escape response, in contrast to giant fiber systems in earthworms, certain insects, and crayfishes. A quick escape is observed in whip spiders, but only after stimulation of the filiform hairs (trichobothria) on the regular walking legs. Although the giant fiber system in the antenniform legs undoubtedly provides a fast sensory pathway, its biological significance is not clearly understood at the moment. Microsc. Res. Tech. 58:272,282, 2002. © 2002 Wiley-Liss, Inc. [source]

    Tumor-associated macrophages infiltrate plasmacytomas and can serve as cell carriers for oncolytic measles virotherapy of disseminated myeloma,

    Kah-Whye Peng
    In multiple myeloma, some of the neoplastic plasma cells are diffusely dispersed among the normal bone marrow cells (bone marrow resident), whereas others are located in discrete, well-vascularized solid tumors (plasmacytomas) that may originate in bone or soft tissue. Interactions between bone marrow-resident myeloma cells and bone marrow stromal cells (BMSCs) are important determinants of myeloma pathogenesis. However, little is known of the factors sustaining myeloma growth and cell viability at the centers of expanding plasmacytomas, where there are no BMSCs. Histologic sections of 22 plasmacytomas from myeloma patients were examined after immunostaining. Abundant CD68+, CD163+, S100-negative macrophage infiltrates were identified in all tumors, accompanied by scattered collections of CD3+ T lymphocytes. The CD68+ tumor-associated macrophages (TAM) accounted for 2,12% of nucleated cells and were evenly distributed through the parenchyma. The TAM generally had dendritic morphology, and each dendrite was in close contact with multiple plasma cells. In some cases, the TAM were strikingly clustered around CD34+ blood vessels. To determine whether cells of the monocytic lineage might be exploitable as carriers for delivery of therapeutic agents to plasmacytomas, primary human CD14+ cells were infected with oncolytic measles virus and administered intravenously to mice bearing KAS6/1 human myeloma xenografts. The cell carriers localized to KAS6/1 tumors, where they transferred MV infection to myeloma cells and prolonged the survival of mice bearing disseminated human myeloma disease. Thus, TAM are a universal stromal component of the plasmacytomas of myeloma patients and may offer a promising new target for therapeutic exploitation. Am. J. Hematol. 2009. © 2009 Wiley-Liss, Inc. [source]

    Evidence of cell-nonautonomous changes in dendrite and dendritic spine morphology in the met-signaling,deficient mouse forebrain

    Matthew C. Judson
    Abstract Human genetic findings and murine neuroanatomical expression mapping have intersected to implicate Met receptor tyrosine kinase signaling in the development of forebrain circuits controlling social and emotional behaviors that are atypical in autism-spectrum disorders (ASD). To clarify roles for Met signaling during forebrain circuit development in vivo, we generated mutant mice (Emx1Cre/Metfx/fx) with an Emx1-Cre-driven deletion of signaling-competent Met in dorsal pallially derived forebrain neurons. Morphometric analyses of Lucifer yellow-injected pyramidal neurons in postnatal day 40 anterior cingulate cortex (ACC) revealed no statistically significant changes in total dendritic length but a selective reduction in apical arbor length distal to the soma in Emx1Cre/Metfx/fx neurons relative to wild type, consistent with a decrease in the total tissue volume sampled by individual arbors in the cortex. The effects on dendritic structure appear to be circuit-selective, insofar as basal arbor length was increased in Emx1Cre/Metfx/fx layer 2/3 neurons. Spine number was not altered on the Emx1Cre/Metfx/fx pyramidal cell populations studied, but spine head volume was significantly increased (,20%). Cell-nonautonomous, circuit-level influences of Met signaling on dendritic development were confirmed by studies of medium spiny neurons (MSN), which do not express Met but receive Met-expressing corticostriatal afferents during development. Emx1Cre/Metfx/fx MSN exhibited robust increases in total arbor length (,20%). As in the neocortex, average spine head volume was also increased (,12%). These data demonstrate that a developmental loss of presynaptic Met receptor signaling can affect postsynaptic morphogenesis and suggest a mechanism whereby attenuated Met signaling could disrupt both local and long-range connectivity within circuits relevant to ASD. J. Comp. Neurol. 518:4463,4478, 2010. © 2010 Wiley-Liss, Inc. [source]

    Actions of motor neurons and leg muscles in jumping by planthopper insects (hemiptera, issidae)

    Malcolm Burrows
    Abstract To understand the catapult mechanism that propels jumping in a planthopper insect, the innervation and action of key muscles were analyzed. The large trochanteral depressor muscle, M133b,c, is innervated by two motor neurons and by two dorsal unpaired median (DUM) neurons, all with axons in N3C. A smaller depressor muscle, M133a, is innervated by two neurons, one with a large-diameter cell body, a large, blind-ending dendrite, and a giant ovoid, axon measuring 50 ,m by 30 ,m in nerve N5A. The trochanteral levator muscles (M132) and (M131) are innervated by N4 and N3B, respectively. The actions of these muscles in a restrained jump were divisible into a three-phase pattern. First, both hind legs were moved into a cocked position by high-frequency bursts of spikes in the levator muscles lasting about 0.5 seconds. Second, and once both legs were cocked, M133b,c received a long continuous sequence of motor spikes, but the two levators spiked only sporadically. The spikes in the two motor neurons to M133b,c on one side were closely coupled to each other and to the spikes on the other side. If one hind leg was cocked then the spikes only occurred in motor neurons to that side. The final phase was the jump movement itself, which occurred when the depressor spikes ceased and which lasted 1 ms. Muscles 133b,c activated synchronously on both sides, are responsible for generating the power, and M133a and its giant neuron may play a role in triggering the release of a jump. J. Comp. Neurol. 518:1349,1369, 2010. © 2009 Wiley-Liss, Inc. [source]

    Intraneuronal localization of Nogo-A in the rat

    Wei-Lin Jin
    Abstract Nogo-A is known to be a myelin-associated protein with strong inhibitory effect on neurite outgrowth and has been considered one of the major factors that hinder fiber regeneration in the central nervous system. Recent studies have demonstrated widespread occurrence of nogo-A mRNA and Nogo-A protein in neurons. Our concurrent immunohistochemical study substantiated the widespread distribution of neuronal Nogo-A. The present study was thus focused on its intraneuronal distribution in the central nervous system, using Western blotting, immunohistochemical, and immunogold electron microscopic techniques. Western blotting of the nucleus, cytoplasm, and membrane subcellular fractions of the cerebellum and spinal cord tissues demonstrated that all three fractions contained Nogo-A. Nogo-A immunoreactivity could be identified under confocal microscope in the nucleus, perikayon, and proximal dendrite and along the cell membrane. Under the electron microscope, the perikaryonal Nogo-A immunogold particles were mainly distributed at polyribosomes and rough endoplasmic reticulum, suggesting its relationship with translation process. The immunogold particles could also be found beneath or on the plasma membrane. In the nucleus, the Nogo-A immunogold particles were found to be localized at the chromatins of the nucleus, indicating its possible involvement in gene transcription. The presence of Nogo-A in the nucleus was further supported by transfection of COS-7L cells with nogo-A. This study provides the first immunocytochemical evidence for intraneuronal distribution of Nogo-A. Apparently, the significance of Nogo-A in the central nervous system is far more complex than what has been envisioned. J. Comp. Neurol. 458:1,10, 2003. © 2003 Wiley-Liss, Inc. [source]

    Electrochemical Synthesis of Dendritic Polyaniline in Brřnsted Acid Ionic Liquids

    Liu Bao-You
    Abstract Brřnsted acid ionic liquids were successfully applied to the electrochemical synthesis of polyaniline films on platinum electrode surfaces by using cyclic voltammetry. The scanning electron micrographs showed distinct changes in morphological structures. The films exhibited quite dense packing and good ordering of polymer dendrite as compared with those prepared using conventional hydrochloric acid, indicating that Brřnsting acid ionic liquids might be promising alternatives to dual medium-dopants in the synthesis of conducting polymers. [source]

    Investigation of growth kinetics and morphology of sodium fluorosilicate ice-analogue crystals in solutions and gels

    M. J. Krasi
    Abstract The effect of growth method (solution or gel growth) and growth conditions on the morphology of ice analogue crystals (sodium fluorosilicate) has been studied. Many habits typical for atmospheric ice crystals (hexagonal columns, plates, different types of stars or dendrites) were obtained during experiments. The dependence of growth rate of basal and prism faces of columnar crystals on supersaturation was measured for crystals growing by evaporation of solvent. The experiments establish evaporation rate and growth rate ranges at which appearance of certain types of crystals is most probable. The experiments have also shown that good quality sodium fluorosilicate crystals can be obtained in TMS gel. These crystals were significantly bigger than those obtained in solution. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]

    Equilibrium and growth shapes of crystals: how do they differ and why should we care?

    Robert F. SekerkaArticle first published online: 15 MAR 200
    Abstract Since the death of Prof. Dr. Jan Czochralski nearly 50 years ago, crystals grown by the Czochralski method have increased remarkably in size and perfection, resulting today in the industrial production of silicon crystals about 30 cm in diameter and two meters in length. The Czochralski method is of great technological and economic importance for semiconductors and optical crystals. Over this same time period, there have been equally dramatic improvements in our theoretical understanding of crystal growth morphology. Today we can compute complex crystal growth shapes from robust models that reproduce most of the features and phenomena observed experimentally. We should care about this because it is likely to result in the development of powerful and economical design tools to enable future progress. Crystal growth morphology results from an interplay of crystallographic anisotropy and growth kinetics by means of interfacial processes and long-range transport. The equilibrium shape of a crystal results from minimizing its anisotropic surface free energy under the constraint of constant volume; it is given by the classical Wulff construction but can also be represented by an analytical formula based on the ,-vector formalism of Hoffman and Cahn. We now have analytic criteria for missing orientations (sharp corners or edges) on the equilibrium shape, both in two (classical) and three (new) dimensions. Crystals that grow under the control of interfacial kinetic processes tend asymptotically toward a "kinetic Wulff shape", the analogue of the Wulff shape, except it is based on the anisotropic interfacial kinetic coefficient. If it were not for long range transport, crystals would presumably nucleate with their equilibrium shape and then evolve toward their "kinetic Wulff shape". Allowing for long range transport leads to morphological instabilities on the scale of the geometric mean of a transport length (typically a diffusivity divided by the growth speed) and a capillary length (of the order of atomic dimensions). Resulting crystal growth shapes can be cellular or dendritic, but can also exhibit corners and facets related to the underlying crystallographic anisotropy. Within the last decade, powerful phase field models, based on a diffuse interface, have been used to treat simultaneously all of the above phenomena. Computed morphologies can exhibit cells, dendrites and facets, and the geometry of isotherms and isoconcentrates can also be determined. Results of such computations are illustrated in both two and three dimensions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]

    Rearrangement of microtubule polarity orientation during conversion of dendrites to axons in cultured pyramidal neurons

    CYTOSKELETON, Issue 5 2007
    Daisuke Takahashi
    Abstract Axons and dendrites of neurons differ in the polarity orientation of their microtubules. Whereas the polarity orientation of microtubules in axons is uniform, with all plus ends distal, that in dendrites is nonuniform. The mechanisms responsible for establishment and maintenance of microtubule polarity orientation in neuronal processes remain unclear, however. We previously described a culture system in which dendrites of rat cortical neurons convert to axons. In the present study, we examined changes in microtubule polarity orientation in such dendrites. With the use of the hooking procedure and electron microscopy, we found that microtubule polarity orientation changed from nonuniform to uniform, with a plus end-distal arrangement, in dendrites that gave rise to axons during culture of neurons for 24 h. Microtubule polarity orientation remained nonuniform in dendrites that did not elongate. Axon regeneration at the dendritic tip thus triggered the disappearance of minus end-distal microtubules from dendrites. These minus end-distal microtubules also disappeared from dendrites during axon regeneration in the presence of inhibitors of actin polymerization, suggesting that actin-dependent transport of microtubules is not required for this process and implicating a previously unidentified mechanism in the establishment and maintenance of microtubule polarity orientation in neuronal processes. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]

    Expression of constructs of the neuronal isoform of myosin-Va interferes with the distribution of melanosomes and other vesicles in melanoma cells

    CYTOSKELETON, Issue 2 2002
    Joăo Carlos da Silva Bizario
    Abstract Myosin-Va has been implicated in melanosome translocation, but the exact molecular mechanisms underlying this function are not known. In the dilute, S91 melanoma cells, melanosomes move to the cell periphery but do not accumulate in the tips of dendrites as occurs in wild-type B16 melanocytes; rather, they return and accumulate primarily at the pericentrosomal region in a microtubule-dependent manner. Expression of the full-length neuronal isoform of myosin-Va in S91 cells causes melanosomes to disperse, occupying a cellular area approximately twice that observed in non-transfected cells, suggesting a partial rescue of the dilute phenotype. Overexpression of the full tail domain in S91 cells is not sufficient to induce melanosome dispersion, rather it causes melanosomal clumping. Overexpression of the head and head-neck domains of myosin-Va in B16 cells does not alter the melanosome distribution. However, overexpression of the full tail domain in these cells induces melanosome aggregation and the appearance of tail-associated, aggregated particles or vesicular structures that exhibit variable degrees of staining for melanosomal and Golgi ,-COP markers, as well as colocalization with the endogenous myosin-Va. Altogether, the present data suggest that myosin-Va plays a role in regulating the direction of microtubule-dependent melanosome translocation, in addition to promoting the capture of melanosomes at the cell periphery as suggested by previous studies. These studies also reinforce the notion that myosin-V has a broader function in melanocytes by acting on vesicular targeting or intracellular protein trafficking. Cell Motil. Cytoskeleton 51:57,75, 2002. © 2002 Wiley-Liss, Inc. [source]

    Remodeling of the actin cytoskeleton of target hepatocytes and NK cells during induction of apoptosis

    CYTOSKELETON, Issue 2 2001
    W. Marty Blom
    Abstract Natural Killer cells are immune cells that recognize and eliminate altered and non-self cells from the circulation. To study the interaction between NK cells and target cells, we set up an experimental system consisting of rat Interleukin-2 activated Natural Killer cells (A-NK cells) and rat hepatocytes with a masked Major Histocompatibility Complex (MHC). The masking of the MHC induces recognition of the hepatocytes by the NK cells as non-self. We showed that in vitro apoptosis is rapidly induced in the hepatocytes [Blom et al., 1999] after co-incubation with A-NK cells. Now we describe the morphological changes that occur during and after interaction of A-NK cells with hepatocytes. Confocal laser scanning microscopy showed that the actin cytoskeleton of the NK cells was remodeled during attack of hepatocytes. Some NK cells were in close contact with the hepatocytes while others had formed actin-containing dendrites of varying length that made contact with the hepatocytes. However, dendrite formation is not obligatory for induction of apoptosis because cells that were unable to form these did induce FAS-dependent apoptosis in hepatocytes. Apparently both direct as well as distant contact resulted in apoptosis. Formation of the dendrites was calcium-dependent as EGTA largely prevented it. Importantly, chelation of the calcium also suppressed killing of the hepatocytes. Within 1 h after addition of the A-NK cells, morphological changes in hepatocytes that are characteristic of apoptosis, such as the formation of apoptotic bodies and fragmented nuclei, became apparent. Specifically, the actin cytoskeleton of the hepatocytes was remodeled resulting in the formation of the apoptotic bodies. Inhibition of caspase activity by z-Val-Ala-DL-Asp-fluoromethylketone (100 ,M) partly protected against the rearrangement of the actin filaments in the hepatocytes. Cell Motil. Cytoskeleton 49:78,92, 2001. © 2001 Wiley-Liss, Inc. [source]

    Temporal and spatial expression profiles of the Fat3 protein, a giant cadherin molecule, during mouse development

    Shigenori Nagae
    Abstract Cadherins constitute a superfamily of cell,cell interaction molecules that participate in morphogenetic processes of animal development. Fat cadherins are the largest members of this superfamily, with 34 extracellular cadherin repeats. Classic Fat, identified in Drosophila, is known to regulate cell proliferation and planar cell polarity. Although 4 subtypes of Fat cadherin, Fat1, Fat2, Fat3, and Fat4/Fat-J, have been identified in vertebrates, their protein localization remains largely unknown. Here we describe the mRNA and protein distributions of Fat3 during mouse development. We found that Fat3 expression was restricted to the nervous system. In the brain, Fat3 was expressed in a variety of regions and axon fascicles. However, its strongest expression was observed in the olfactory bulb and retina. Detailed analysis of Fat3 in the developing olfactory bulb revealed that Fat3 mRNA was mainly expressed by mitral cells and that its proteins were densely localized along the dendrites of these cells as well as in their axons to some extent. Fat3 transcripts in the retina were expressed by amacrine and ganglion cells, and its proteins were concentrated in the inner plexiform layer throughout development. Based on these observations, we suggest that Fat3 plays a role in the interactions between neurites derived from specific subsets of neurons during development. Developmental Dynamics 236:534,543, 2007. © 2006 Wiley-Liss, Inc. [source]

    Olfactory epithelium influences the orientation of mitral cell dendrites during development

    Laura López-Mascaraque
    Abstract We have established previously that, although the olfactory epithelium is absent in the homozygous Pax-6 mutant mouse, an olfactory bulb-like structure (OBLS) does develop. Moreover, this OBLS contains cells that correspond to mitral cells, the primary projection neurons in the olfactory bulb. The current study aimed to address whether the dendrites of mitral cells in the olfactory bulb or in the OBLS mitral-like cells, exhibit a change in orientation in the presence of the olfactory epithelium. The underlying hypothesis is that the olfactory epithelium imparts a trophic signal on mitral and mitral-like cell that influences the growth of their primary dendrites, orientating them toward the surface of the olfactory bulb. Hence, we cultured hemibrains from wild-type and Pax 6 mutant mice from two different embryonic stages (embryonic days 14 and 15) either alone or in coculture with normal olfactory epithelial explants or control tissue (cerebellum). Our results indicate that the final dendritic orientation of mitral and mitral-like cells is directly influenced both by age and indeed by the presence of the olfactory epithelium. Developmental Dynamics 232:325,335, 2005. © 2004 Wiley-Liss, Inc. [source]

    Accelerated neuritogenesis and maturation of primary spinal motor neurons in response to nanofibers

    Caitlyn C. Gertz
    Abstract Neuritogenesis, neuronal polarity formation, and maturation of axons and dendrites are strongly influenced by both biochemical and topographical extracellular components. The aim of this study was to elucidate the effects of polylactic acid electrospun fiber topography on primary motor neuron development, because regeneration of motor axons is extremely limited in the central nervous system and could potentially benefit from the implementation of a synthetic scaffold to encourage regrowth. In this analysis, we found that both aligned and randomly oriented submicron fibers significantly accelerated the processes of neuritogenesis and polarity formation of individual cultured motor neurons compared to flat polymer films and glass controls, likely due to restricted lamellipodia formation observed on fibers. In contrast, dendritic maturation and soma spreading were inhibited on fiber substrates after 2 days in vitro. This study is the first to examine the effects of electrospun fiber topography on motor neuron neuritogenesis and polarity formation. Aligned nanofibers were shown to affect the directionality and timing of motor neuron development, providing further evidence for the effective use of electrospun scaffolds in neural regeneration applications. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 589,603, 2010 [source]

    Prenatal stress causes dendritic atrophy of pyramidal neurons in hippocampal CA3 region by glutamate in offspring rats

    Ning Jia
    Abstract A substantial number of human epidemiological data, as well as experimental studies, suggest that adverse maternal stress during gestation is involved in abnormal behavior, mental, and cognition disorder in offspring. To explore the effect of prenatal stress (PS) on hippocampal neurons, in this study, we observed the dendritic field of pyramidal neurons in hippocampal CA3, examined the concentration of glutamate (Glu), and detected the expression of synaptotagmin-1 (Syt-1) and N -methyl- D -aspartate receptor 1 (NR1) in hippocampus of juvenile female offspring rats. Pregnant rats were divided into two groups: control group (CON) and PS group. Female offspring rats used were 30-day old. The total length of the apical dendrites of pyramidal neurons in hippocampal CA3 of offspring was significantly shorter in PS than that in CON (p < 0.01). The number of branch points of the apical dendrites of pyramidal neurons in hippocampal CA3 of offspring was significantly less in PS (p < 0.01). PS offspring had a higher concentration of hippocampal Glu compared with CON (p < 0.05). PS offspring displayed increased expression of Syt-1 and decreased NR1 in hippocampus compared with CON (p < 0.001 and p < 0.01, respectively). The expression of NR1 in different hippocampus subfields of offspring was significantly decreased in PS than that in CON (p < 0.05-0.01). This study shows that PS increases the Glu in hippocampus and causes apical dendritic atrophy of pyramidal neurons of hippocampal CA3 in offspring rats. The decline of NR1 in hippocampus may be an adaptive response to the increased Glu. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2010 [source]