Home About us Contact | |||
Denaturing High-performance Liquid Chromatography (denaturing + high-performance_liquid_chromatography)
Selected AbstractsMolecular Genetic Analysis of PRKAG2 in Sporadic Wolff-Parkinson-White SyndromeJOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 3 2003CARL J. VAUGHAN Introduction: Mutations in the PRKAG2 gene that encodes the gamma2 regulatory subunit of AMP-activated protein kinase have been shown to cause autosomal dominant Wolff-Parkinson-White (WPW) syndrome associated with hypertrophic cardiomyopathy. Prior studies focused on familial WPW syndrome associated with other heart disease such as hypertrophic cardiomyopathy. However, such disease accounts for only a small fraction of WPW cases, and the contribution of PRKAG2 mutations to sporadic isolated WPW syndrome is unknown. Methods and Results: Subjects presented for clinical electrophysiologic evaluation of suspected WPW syndrome. WPW syndrome was diagnosed by ECG findings and/or by clinically indicated electrophysiologic study prior to enrollment. Echocardiography excluded hypertrophic cardiomyopathy. Denaturing high-performance liquid chromatography and automated sequencing were used to search for PRKAG2 mutations. Twenty-six patients without a family history of WPW syndrome were studied. No subject had cardiac hypertrophy, and only one patient had associated congenital heart disease. Accessory pathways were detected at diverse locations within the heart. Two polymorphisms in PRKAG2 were detected. [inv6+36insA] occurred in intron 6 in 4 WPW patients and [inv10+10delT] in intron 10 in 1 WPW patient. Both occurred in normal unrelated chromosomes. No PRKAG2 mutations were detected. Conclusion: This study shows that, unlike familial WPW syndrome, constitutional mutation of PRKAG2 is not commonly associated with sporadic WPW syndrome. Although polymorphisms within the PRKAG2 introns were identified, there is no evidence that these polymorphisms predispose to accessory pathway formation because their frequency is similarly high in both WPW patients and normal individuals. Further studies are warranted to identify the molecular basis of common sporadic WPW syndrome.(J Cardiovasc Electrophysiol, Vol. 14, pp. 263-268, March 2003) [source] Screening for G71R mutation of the UGT1A1 gene in the Javanese-Indonesian and Malay-Malaysian populationsPEDIATRICS INTERNATIONAL, Issue 5 2004Retno Sutomo AbstractBackground:,There are significant differences in the prevalence and severity of neonatal jaundice among various populations. Recently, it has been reported that a mutation of the UGT1A1 gene, glycine to arginine at codon 71 (G71R), is related to the development of neonatal jaundice in East Asian populations. However, whether the G71R mutation contributes to the high incidence of neonatal jaundice in different Asian populations remains unknown. The authors screened for this mutation in the Javanese-Indonesian and Malay-Malaysian populations. Methods:,One hundred and thirty-six subjects were enrolled in this study: 68 Javanese-Indonesian adults and 68 Malay-Malaysian newborns (32 with jaundice and 36 without jaundice). Denaturing high-performance liquid chromatography (DHPLC) was used to screen for the G71R mutation, and the results were confirmed by nucleotide sequencing analysis. Results:,With DHPLC, the authors easily and clearly detected seven subjects carrying the G71R mutation: two Javanese-Indonesian adults and five Malay-Malaysian newborns. In the 68 Javanese-Indonesian adults, the genotype distribution for G71R mutation was 66 G/G, two G/R and no R/R genotypes, and the mutated allele frequency was 0.015. In the 68 Malay-Malaysian newborns, genotype distribution for the mutation was 63 G/G, five G/R and no R/R genotypes, and the mutated allele frequency was 0.037. The genotype distributions did not differ significantly between the newborns with jaundice and those without jaundice. Conclusion:,The G71R mutation is present, but very rare, in Javanese-Indonesians and Malay-Malaysians. Thus, G71R mutation may not contribute to the high incidence of the neonatal jaundice in South-east Asian populations. DHPLC analysis is a very useful method for detecting the G71R mutation. [source] Mutation screening of the macrophage migration inhibitory factor gene: Positive association of a functional polymorphism of macrophage migration inhibitory factor with juvenile idiopathic arthritisARTHRITIS & RHEUMATISM, Issue 9 2002Rachelle Donn Objective To determine if polymorphisms of the macrophage migration inhibitory factor (MIF) gene are associated with juvenile idiopathic arthritis (JIA). Methods Denaturing high-performance liquid chromatography was used to screen the MIF gene in 32 UK Caucasian controls and 88 UK Caucasian JIA patients. Ninety-two healthy UK Caucasian controls were then genotyped for each of the polymorphic positions identified. A panel of 526 UK Caucasian JIA patients and 259 UK Caucasian controls were subsequently genotyped for a single-nucleotide polymorphism (SNP) identified in the 5,-flanking region of the gene, using SNaPshot ddNTP primer extension and capillary electrophoresis. The functional significance of this polymorphism was also studied using luciferase-based reporter gene assays in human T lymphoblast and epithelial cell lines. Results A tetranucleotide repeat CATT(5,7) beginning at nucleotide position ,794 and 3 SNPs at positions ,173 (G to C), +254 (T to C), and +656 (C to G) of the MIF gene were identified. No JIA-specific mutations were found. Allele and genotype frequencies differed significantly between the controls and the JIA patients for the MIF-173 polymorphism. Individuals possessing a MIF-173*C allele had an increased risk of JIA (34.8% versus 21.6%) (odds ratio 1.9, 95% confidence interval 1.4,2.7; P = 0.0002). Furthermore, the MIF-173* G and C variants resulted in altered expression of MIF in a cell type,specific manner. Serum levels of MIF were also significantly higher in individuals who carried a MIF-173*C allele (P = 0.04). Conclusion The ,173-MIF*C allele confers increased risk of susceptibility to JIA. Our data suggest a cell type,specific regulation of MIF, which may be central to understanding its role in inflammation. [source] Genetic and clinical heterogeneity of ferroportin diseaseBRITISH JOURNAL OF HAEMATOLOGY, Issue 5 2005Laura Cemonesi Summary Ferroportin is encoded by the SLC40A1 gene and mediates iron export from cells by interacting with hepcidin. SLC40A1 gene mutations are associated with an autosomal type of genetic iron overload described as haemochromatosis type 4, or HFE4 (Online Mendelian Inheritance in Man number 606069), or ferroportin disease. We report three families with this condition caused by novel SLC40A1 mutations. Denaturing high-performance liquid chromatography was employed to scan for the SLC40A1 gene. A D181V (A846T) mutation in exon 6 of the ferroportin gene was detected in the affected members of an Italian family and shown to have a de novo origin in a maternal germinal line. This mutation was associated with both parenchymal and reticuloendothelial iron overload in the liver, and with reduced urinary hepcidin excretion. A G80V (G543T) mutation in exon 3 was found in the affected members of an Italian family with autosomal hyperferritinaemia,. Finally, a G267D (G1104A) mutation was identified in exon 7 in a family of Chinese descent whose members presented with isolated hyperferritinaemia. Ferroportin disease represents a protean genetic condition in which the different SLC40A1 mutations appear to be responsible for phenotypic variability. This condition should be considered not only in families with autosomal iron overload or hyperferritinaemia, but also in cases of unexplained hyperferritinaemia. [source] DNA variants in coding region of EFHC1: SNPs do not associate with juvenile myoclonic epilepsyEPILEPSIA, Issue 5 2009Dongsheng Bai Summary Purpose:, Juvenile myoclonic epilepsy (JME) accounts for 3 to 12% of all epilepsies. In 2004, we identified a mutation-harboring Mendelian gene that encodes a protein with one EF-hand motif (EFHC1) in chromosome 6p12. We observed one doubly heterozygous and three heterozygous missense mutations in EFHC1 segregating as an autosomal dominant gene with 21 affected members of six Hispanic JME families from California and Mexico. In 2006, similar and three novel missense mutations were reported in sporadic and familial Caucasian JME from Italy and Austria. In this study, we asked if coding single nucleotide polymorphisms (SNPs) of EFHC1 also contribute as susceptibility alleles to JME with complex genetics. Methods:, We screened using denaturing high-performance liquid chromatography (DHPLC) and then directly sequenced the 11 exons of EFHC1 in 130 unrelated JME probands, their 352 family members, and seven exons of EFHC1 in 400,614 ethnically matched controls. We carried out case-control association studies between 124 unrelated Hispanic JME probands and 552,614 ethnically matched controls using four SNPs, rs3804506, rs3804505, rs1266787, and rs17851770. We also performed family-based association on SNPs rs3804506 and rs3804505 in 84 complete JME families using the Family-Based Association Test (FBAT) program. Results:, We found no statistically significant differences between JME probands and controls in case-control association and no genetic transmission disequilibria in family-based association for the tested SNPs. In addition, we identified four new DNA variants in the coding region of EFHC1. Conclusion:, The four coding SNPs, rs3804506, rs3804505, rs1266787, and rs17851770, of EFHC1 may not be susceptibility alleles for JME. [source] Further genetic evidence implicates the vasopressin system in childhood-onset mood disordersEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009Emma L. Dempster Abstract Studies in both animals and humans advocate a role for the vasopressin (AVP) system in the aetiology of depressive symptoms. Attention has particularly focused on the role of AVP in the overactivation of the hypothalamic-pituitary-adrenal (HPA)-axis in mood disorders. Elevated AVP plasma levels have been found in mood disorder patients, which are often positively correlated with the severity of symptoms. We recently reported an association between childhood-onset mood disorders (COMD) and polymorphisms in the receptor responsible for the AVP-mediated activation of the HPA-axis (AVPR1B). As genetic variation in the vasopressinergic system could provide a mechanism to explain the endocrine alterations observed in mood disorders, we investigated other genes in this system. The gene encoding AVP is the strongest candidate, particularly as genetic variation in this gene in rodents is associated with anxiety-related behaviours. Six single-nucleotide polymorphisms (SNPs) were genotyped across the AVP gene in a sample comprised of 586 Hungarian nuclear families ascertained through affected probands with a diagnosis of COMD. In addition, AVP coding and putative regulatory regions were screened for mutations using denaturing high-performance liquid chromatography. One SNP, 3, to the AVP, gene reached significance (P = 0.03), as did the overtransmission of a five-marker haplotype with a frequency of 22% (P = 0.0001). The subsequent mutation screen failed to identify any putative functional polymorphisms. The outcome of this study, combined with our previous association between COMD and AVPR1B, implicates genetic variation in vasopressinergic genes in mediating vulnerability to COMD. [source] Mutations in the ataxia telangiectasia and rad3-related,checkpoint kinase 1 DNA damage response axis in colon cancersGENES, CHROMOSOMES AND CANCER, Issue 12 2007Kriste A. Lewis In response to certain types of DNA damage, ataxia telangiectasia and rad3-related (ATR) phosphorylates checkpoint kinase 1 (CHEK1) resulting in cell cycle arrest and subsequent DNA repair. ATR and CHEK1 contain mononucleotide microsatellite repeat regions, which are mutational targets in tumors with defective mismatch repair (MMR). This study examined the frequency of such mutations in colon cancers and their impact on biologic behavior. Screening for ATR mutations in 48 tumors was performed using denaturing high-performance liquid chromatography (DHPLC) and confirmed with sequencing analysis. The CHEK1 exon 7 A(9) region was sequenced in 20 of the 27 (74%) tumors with high frequency of microsatellite instability (MSI-H). Univariate and multivariate analyses were used to examine associations with clinical outcomes. Frequent mutations in MSI-H colon cancers were identified within the ATR (37%)/CHEK1(5%) damage response pathway. Stage and MSI status both independently predicted overall survival (OS) and disease-free survival (DFS). ATR status was not associated with stage, but was associated with a trend toward improved DFS: 0/9 cancers recurred in MSI-H cases harboring ATR mutations vs. 4/18 recurrences in MSI-H cases without ATR mutations. This suggests that ATR mutations may affect clinical behavior and response to therapy in MSI-H colon cancers. © 2007 Wiley-Liss, Inc. [source] DHPLC is superior to SSCP in screening p53 mutations in esophageal cancer tissuesINTERNATIONAL JOURNAL OF CANCER, Issue 1 2005Osamu Yamanoshita Abstract Mutations of the p53 tumor-suppressor gene universally occur on exons 5,8 in human cancer. We analyzed these mutations in esophageal cancer tissue from 207 patients in China using 2 methods, single-strand conformation polymorphism (SSCP), one of the most frequently used methods, and the recently developed denaturing high-performance liquid chromatography (DHPLC), and compared their sensitivity and efficiency. Exons 5,8 of p53 were amplified from esophageal cancer tissue genomes, screened for fragments of mutations and polymorphisms by SSCP and DHPLC in a blind study and confirmed by direct sequencing to detect the mutations and polymorphisms. The numbers detected by DHPLC were greater than those detected by SSCP, though the rate of mutations and polymorphisms was lower in SSCP than in DHPLC, which appeared to detect smaller mutations (substitutions and 1 bp insertions/deletions). Of the mutations with substitutions detected by DHPLC but not by SSCP, 50% substituted adenosine for other nucleotides, suggesting that these mutations are often missed when SSCP is used. According to these data, the sensitivity of SSCP and DHPLC was 81% and 97%, respectively, and the specificity was 97% and 85%, respectively. Our results suggest that DHPLC may be recommended over SSCP when screening gene mutations. Thus, rates of p53 mutations and polymorphisms in esophageal cancer tissue in Chinese patients were 49% and 41% by DHPLC and SSCP, respectively. © 2004 Wiley-Liss, Inc. [source] Rapid denaturing high-performance liquid chromatography (DHPLC) for mutation scanning of the transforming growth factor ,3 gene using a novel proof-reading polymeraseINTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 5 2003A. Bayat Summary We have utilized a novel variation on the conventional denaturing high-performance liquid chromatography (DHPLC) technology, which we term rapid DHPLC, combining changes in instrumentation, cartridge technology and analysis conditions to enable significant increases in throughput to be achieved. In addition, the use of a novel proof-reading polymerase for sample amplification with a low misincorporation rate enables simplification of the DHPLC patterns and hence enhanced mutation detection recognition. This scheme for increasing DHPLC throughput has been tested by scanning the transforming growth factor (TGF) ,3 gene for the presence of mutations for which there is limited published or on-line data available regarding the presence of gene polymorphisms. TGF, isoforms have multiple roles in cell division, growth, proliferation, transformation and differentiation. TGF,3 is a TGF, cytokine isoform, and has an important role in embryogenesis, cell differentiation and wound healing. The TGF,3 gene consists of seven exons and six introns spanning 43 000 bp of the human genome on chromosome 14q23,24. The rapid DHPLC approach enabled scanning of all seven exons and part of the promoter region (1000 bp upstream from exon 1 in the 5,-flanking regions) of the TGF,3 gene in 95 Caucasian individuals in only 8 days, in comparison to the 17 days it would have previously taken. Mutations were clearly identified in the promoter region of the TGF,3 gene but were absent from the exonic regions. Understanding the genetic variations affecting the TGF,3 gene is important as this molecule has multiple regulatory functions on a variety of cell types. [source] HFE, SLC40A1, HAMP, HJV, TFR2, and FTL mutations detected by denaturing high-performance liquid chromatography after iron phenotyping and HFE C282Y and H63D genotyping in 785 HEIRS Study participants,,AMERICAN JOURNAL OF HEMATOLOGY, Issue 11 2009James C. Barton We sought to identify mutations that could explain iron phenotype heterogeneity in adults with previous HFE genotyping to detect C282Y and H63D. HEIRS Study participants genotyped for C282Y and H63D were designated as high transferrin saturation (TS) and/or serum ferritin (SF) (high TS/SF), low TS/SF, or controls. We grouped 191 C282Y homozygotes as high TS/SF, low TS/SF, or controls, and 594 other participants by race/ethnicity as high TS/SF or controls. Using denaturing high-performance liquid chromatography (DHPLC), we screened 20 regions of HFE, SLC40A1, HAMP, HJV, TFR2, and FTL in each participant. DHPLC analyses were successful in 99.3% of 791 participants and detected 117 different mutations. In C282Y homozygotes, 4.0% of high TS/SF participants had SLC40A1 Q248H, HAMP -72C>T, or HAMP R59G heterozygosity (0% Controls; P = 0.1200). In whites, 4.1% with high TS/SF and 1.3% of controls had HFE S65C or E168Q (P = 0.3049). HJV c.-6C>G and FTL L55L frequencies were greater in whites with high TS/SF than controls (0.0811 vs. 0.0200, P = 0.0144; 0.5743 vs. 0.4400, P = 0.0204, respectively). One Hispanic with high TS/SF (1.3%) had HAMP G71D heterozygosity. In blacks, SLC40A1 Q248H frequencies did not differ significantly between high TS/SF and control participants. Among Asians, 2.8% with high TS/SF were HFE V295A heterozygotes. Mutations other than HFE C282Y and H63D reported to be pathogenic were infrequently detected in high TS/SF participants. Genetic regions in linkage disequilibrium with HJV c.-6C>G and FTL L55L could partly explain high TS/SF phenotypes in whites. Am. J. Hematol., 2009. Published 2009 Wiley-Liss, Inc. [source] Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a reviewPEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 7 2006Cheryl-Ann L Corbett Abstract Resistance to herbicides inhibiting acetolactate synthase (ALS) has been increasing at a faster rate than in any other herbicide group. The great majority of these cases are due to various single-nucleotide polymorphisms in the ALS gene endowing target site resistance. Many diagnostic techniques have been devised in order to confirm resistance and help producers to adopt the best management strategies. Recent advances in DNA technologies coupled with the knowledge of sequence information have allowed the development of accurate and rapid diagnostic tests. While whole plant-based diagnostic techniques such as seedling bioassays or enzyme-based in vitro bioassays provide accurate results, they tend to be labour- and/or space-intensive and will only respond to the particular herbicides tested, making resolution of cross-resistance patterns more difficult. Successful DNA-based diagnosis of ALS inhibitor resistance has been achieved with three main techniques, (1) restriction fragment length polymorphism, (2) polymerase chain reaction amplification of specific alleles and (3) denaturing high-performance liquid chromatography. All DNA-based techniques are relatively rapid and provide clear identification of the mutations causing resistance. Resistance based on non-target mechanisms is not identified by these DNA-based methods; however, given the prevalence of target site-based ALS inhibitor resistance, this is a minor inconvenience. Copyright © 2006 Society of Chemical Industry [source] SFB -based S -haplotyping of apricot (Prunus armeniaca) with DHPLCPLANT BREEDING, Issue 6 2009A. Raz Abstract Most cultivars that belong to the Rosaceae are self-incompatible and depend on cross-pollination. The pollen donor and pollen recipient have to flower synchronously and must be genetically compatible. Genetic compatibility is governed by the S -locus, which holds the S-RNase and S -haplotype-specific F-Box (SFB) genes. Thus, the S -genotype of cultivars is an important feature and is characterized molecularly by the S-RNase and SFB alleles which are distinctive for each S -haplotype. Here, we report the usage of DNA chromatography (denaturing high-performance liquid chromatography , DHPLC) for identifying the S -genotypes of European apricots on the basis of their SFB alleles. DHPLC is amenable to high-throughput automation, and therefore is valuable for breeding and for high-quality plant typing in the nursery. [source] Amplification of genes encoding KIT, PDGFR, and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiformeTHE JOURNAL OF PATHOLOGY, Issue 2 2005Heikki Joensuu Abstract KIT, platelet-derived growth factor receptors (PDGFRs) and vascular endothelial growth factor receptors (VEGFRs) are important clinical targets for tyrosine kinase inhibitors. The frequency of KIT and VEGFR2 amplification in glioblastomas is not known, and few data are available in any other human tumour type. We investigated 43 primary glioblastomas for KIT, VEGFR2, PDGFRA and EGFR amplification using fluorescence in situ hybridization. KIT was amplified in 47% and VEGFR2 in 39% of the glioblastomas, respectively, and PDGFRA in 29%. Thirty-five (81%) of the tumours had either KIT or EGFR amplification. KIT, PDGFRA and VEGFR2 amplifications were strongly associated (p < 0.0001 for each pairwise comparison), suggesting co-amplification, whereas no significant association was found with EGFR amplification. The four secondary glioblastomas arising from pre-existing lower grade astrocytic tumours investigated had KIT amplification but none had EGFR amplification. No mutations were detected with denaturing high-performance liquid chromatography in KIT exons 9, 11, 13 or 17, PDGFRA exons 12 and 18, or EGFR exons 18, 19 or 21. Glioblastomas with KIT, PDGFR or VEGFR2 amplification were associated with similar outcome to other glioblastomas. We conclude that KIT, PDGFRA and VEGFR2 are commonly amplified in primary glioblastoma and that they may also be amplified in secondary glioblastoma. Amplified kinases may be potential targets for tyrosine kinase inhibitor therapy. Copyright © 2005 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] Mutational screening of the CYP26A1 gene in patients with caudal regression syndrome,BIRTH DEFECTS RESEARCH, Issue 2 2006Patrizia De Marco Abstract BACKGROUND The retinoic acid (RA),catabolizing enzyme Cyp26a1 plays an important role in protecting tailbud tissues from inappropriate exposure to RA. Cyp26a1 -null animals exhibit caudal agenesis and spina bifida, imperforate anus, agenesis of the caudal portions of the digestive and urogenital tracts, and malformed lumbosacral skeletal elements. This phenotype closely resembles the most severe form of caudal agenesis in humans. In view of these findings, we investigated a potential involvement of the human CYP26A1 gene in the pathogenesis of caudal regression syndrome (CRS). METHODS Mutational screening of 49 CRS patients and 132 controls was performed using denaturing high-performance liquid chromatography and sequencing. Differences in the genotype and allele frequency of each SNP were evaluated by ,2 analysis. The biological significance of the intronic variants was investigated by transfection assays of mutant constructs and by analysis of the splicing patterns with RT-PCR. RESULTS Mutational screening allowed us to identify 6 SNPs, 4 of which (447C>G, 1134G>A, IVS1+10G>C, and IVS4+8AG>GA) are new. In addition, we describe a novel 2-site haplotype consisting of the 2 intronic SNPs. Both single-locus and haplotype analyses revealed no association with increased risk for CRS. The consequences of the 2 intronic polymorphisms on the mRNA splicing process were also investigated. Moreover, using functional and computational methods we demonstrated that both of these intronic polymorphisms affect the intron splicing efficiency. CONCLUSIONS Our research did not provide evidence that CYP26A1 has implications for the pathogenesis of human CRS. However, the relationship between CRS risk and the CYP26A1 genotype requires further study with a larger number of genotyped subjects. Birth Defects Research (Part A), 2006. © 2006 Wiley-Liss, Inc. [source] Molecular and clinical features associated with CFTR gene rearrangements in Italian population: identification of a new duplication and recurrent deletionsCLINICAL GENETICS, Issue 4 2008V Paracchini Cystic fibrosis (CF) is mainly caused by small deletions or missense mutations in the CFTR gene. The CF mutation database lists more than 35 large rearrangements that may escape detection using polymerase chain reaction-base techniques. The Innogenetics assay, the denaturing high-performance liquid chromatography and sequencing screening showed a mutation detection rate of 92.6% in our population. We report here the results of multiplex ligation-dependent probe amplification (MLPA) screening for CFTR gene rearrangements, performed on the unidentified alleles of our CF patients. Our sample population consists of 692 non-related Italian CF patients (for a total of 1384 alleles), followed at CF Centres in the Lombardia Region. MLPA analysis was performed in 49 patients who still had one or two unidentified alleles (for a total of 52 unidentified alleles) after extensive analysis of CFTR gene. All patients who were studied had the classical form of CF. We characterized nine different deletions and a new duplication. The deletion of exons 22,23 (7/82) was the most frequent in our cohort. The search for deletion/duplications of the CFTR gene has made it possible to reach a 94.1% detection rate, with an improvement (1.6%) of the carrier detection rate in the Italian population. [source] Myocilin gene implicated in primary congenital glaucomaCLINICAL GENETICS, Issue 4 2005K Kaur Primary congenital glaucoma (PCG) has been associated with CYP1B1 gene (2p21), with a predominantly autosomal recessive mode of inheritance. Our earlier studies attributed CYP1B1 mutations to only 40% of Indian PCG cases. In this study, we included 72 such PCG cases where CYP1B1 mutations were detected in only 12 patients in heterozygous condition, implying involvement of other gene(s). On screening these patients for mutations in myocilin (MYOC), another glaucoma-associated gene, using denaturing high-performance liquid chromatography followed by sequencing, we identified a patient who was double heterozygous at CYP1B1 (c.1103G>A; Arg368His) and MYOC (c.144G>T; Gln48His) loci, suggesting a digenic mode of inheritance of PCG. In addition, we identified the same MYOC mutation, implicated for primary open angle glaucoma, in three additional PCG patients who did not harbor any mutation in CYP1B1. These observations suggest a possible role of MYOC in PCG, which might be mediated via digenic interaction with CYP1B1 and/or an yet unidentified locus associated with the disease. [source] |