Denaturing Gradient Gel Electrophoresis (denaturing + gradient_gel_electrophoresis)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Temperature dependence of Fe(III) and sulfate reduction rates and its effect on growth and composition of bacterial enrichments from an acidic pit lake neutralization experiment

GEOBIOLOGY, Issue 4 2005
J. MEIER
ABSTRACT Microbial Fe(III) and sulfate reduction are important electron transport processes in acidic pit lakes and stimulation by the addition of organic substrates is a strategy to remove acidity, iron and sulfate. This principle was applied in a pilot-scale enclosure in pit lake 111 (Brandenburg, Germany). Because seasonal and spatial variation of temperature may affect the performance of in situ experiments considerably, the influence of temperature on Fe(III) and sulfate reduction was investigated in surface sediments from the enclosure in the range of 4,28 °C. Potential Fe(III) reduction and sulfate reduction rates increased exponentially with temperature, and the effect was quantified in terms of the apparent activation energy Ea measuring 42,46 kJ mol,1 and 52 kJ mol,1, respectively. Relatively high respiration rates at 4 °C and relatively low Q10 values (,2) indicated that microbial communities were well adapted to low temperatures. In order to evaluate the effect of temperature on growth and enrichment of iron and sulfate-reducing bacterial populations, MPN (Most Probable Number) dilution series were performed in media selecting for the different bacterial groups. While the temperature response of specific growth rates of acidophilic iron reducers showed mesophilic characteristics, the relatively high specific growth rates of sulfate reducers at the lowest incubation temperature indicated the presence of moderate psychrophilic bacteria. In contrast, the low cell numbers and low specific growth rates of neutrophilic iron reducers obtained in dilution cultures suggest that these populations play a less significant role in Fe and S cycling in these sediments. SSCP (Single-Strand Conformation Polymorphism) or DGGE (Denaturing Gradient Gel Electrophoresis) fingerprinting based on 16S rRNA genes of Bacteria indicated different bacterial populations in the MPN dilution series exhibiting different temperature ranges for growth. [source]


A methane-driven microbial food web in a wetland rice soil

ENVIRONMENTAL MICROBIOLOGY, Issue 12 2007
Jun Murase
Summary Methane oxidation is a key process controlling methane emission from anoxic habitats into the atmosphere. Methanotrophs, responsible for aerobic methane oxidation, do not only oxidize but also assimilate methane. Once assimilated, methane carbon may be utilized by other organisms. Here we report on a microbial food web in a rice field soil driven by methane. A thin layer of water-saturated rice field soil was incubated under opposing gradients of oxygen and 13C-labelled methane. Bacterial and eukaryotic communities incorporating methane carbon were analysed by RNA-stable isotope probing (SIP). Terminal restriction fragment length polymorphism (T-RFLP) and cloning showed that methanotrophs were the most prominent group of bacteria incorporating methane carbon. In addition, a few Myxobacteria -related sequences were obtained from the ,heavy' rRNA fraction. Denaturing gradient gel electrophoresis (DGGE) targeting 18S rRNA detected various groups of protists in the ,heavy' rRNA fraction including naked amoeba (Lobosea and Heterolobosea), ciliates (Colpodea) and flagellates (Cercozoa). Incubation of soil under different methane concentrations in air resulted in the development of distinct protozoan communities. These results suggest that methane carbon is incorporated into non-methanotrophic pro- and microeukaryotes probably via grazing, and that methane oxidation is a shaping force of the microeukaryotic community depending on methane availability. [source]


The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2003
Graeme W. Nicol
Summary The community structure of rhizosphere soil Archaea from three grassland types, associated with different management practices, was examined at a site in the Borders region of Scotland, by analysis of 16S rRNA gene fragments amplified from 16S rDNA and from rRNA. Denaturing gradient gel electrophoresis (DGGE) and sequence analysis of amplified products indicated high relative abundance within the archaeal community of two distinct lineages of non-thermophilic (group 1) Crenarchaeota. Grassland management practices influenced archaeal community structure, as characterized by both 16S rRNA- and 16S rDNA-derived DGGE profiles. One band dominated DGGE profiles in all three grassland types examined, and reproducible differences in the presence and intensity of bands were observed between profiles from managed and natural grassland sites. Analysis of 16S rRNA-derived amplicons from managed and natural grasslands at sites in the north of England and the north of Wales also indicated high relative abundance of non-thermophilic crenarchaeotes within the archaeal community. The band dominating the Scottish grassland site also dominated DGGE profiles from the English and Welsh sites, and similar differences were seen between profiles derived from soils subjected to different management regimes. The study indicates that grassland archaeal communities are dominated by Crenarchaeota, with closely related members of this lineage ubiquitous in distribution in UK upland pasture, and indicate that management practices influence the nature of the crenarchaeotal community. [source]


Short-term dynamics of bacterial communities in a tidally affected coastal ecosystem

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2008
Beate Rink
Abstract Tidal effects on the composition of free-living (FL) and particle-associated (PA) bacterial communities were studied in a tidal flat ecosystem in the southern North Sea. Denaturing gradient gel electrophoresis targeting the 16S rRNA gene and the 16S rRNA of Bacteria, Bacteroidetes, Alphaproteobacteria and the Roseobacter clade was applied. Despite strong tidal variations in the quantity and, depending on the season, also the quality of suspended matter as well as variations in bacterial activity, the bacterial community composition remained rather stable. FISH showed some variations of the community composition, but these were not related to typical tidal situations. Variations were higher during tidal cycles in May and July compared with November. Bacteroidetes, Alpha - and Gammaproteobacteria constituted the majority of the bacterial communities but relative proportions of the different groups varied considerably. On particles, Betaproteobacteria were also detected to substantial proportions. The Roseobacter clade constituted up to 90% of FL but only 30% of PA Alphaproteobacteria. Banding patterns of the Bacteroidetes -specific amplicons, and in particular those targeting the 16S rRNA, revealed tidally induced effects, as several bands appeared or disappeared at distinct events such as slack water or resuspension. Sequencing of prominent bands revealed predominantly phylotypes reported previously from this ecosystem. [source]


Genetic diversity and distribution of periphytic Synechococcus spp. in biofilms and picoplankton of Lake Constance

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2004
Sven Becker
Abstract In various water depths of the littoral zone of Lake Constance (Bodensee) cyanobacteria of the Synechococcus -type were isolated from biofilms (periphyton) on three natural substrates and an artificial one (unglazed tiles). From one tile three strains of phycoerythrin (PE)-rich Synechococcus spp. were isolated, the first examples of these organisms in the epibenthos. Phylogenetic inference based on the 16S,23S rRNA intergenic spacer (ITS-1) assigned all periphytic isolates to two clusters of the picophytoplankton clade (evolutionary lineage VI of cyanobacteria). The sequence divergence in the ITS-1 was used to design specific PCR primers to allow direct, culture-independent detection and quantification of isolated Synechococcus strains in natural periphytic and pelagic samples. Denaturing gradient gel electrophoresis (DGGE) analysis revealed depth-related differences of Synechococcus spp. distribution on tiles placed in the littoral zone. Synechococcus genotypes were observed which occurred in both the periphyton (on tiles) and in the pelagic picoplankton. A strain with one of these genotypes, Synechococcus sp. BO 8805, was isolated from the pelagic zone in 1988. Its genotype was found on tiles that had been exposed at different water depths in the littoral zone in spring and autumn of the year 2000. Quantitative analysis with a genotype-specific TaqMan probe and real-time Taq nuclease assays (TNA) confirmed its presence in the pelagic zone, although appearance of this and related genotypes was highly irregular and exhibited strong differences between consecutive years. Our results show that the ability to form significant subpopulations in pelagic and periphytic communities exists in three out of four phylogenetic clusters of Synechococcus spp. in Lake Constance. This versatility may be a key feature in the ubiquity of the evolutionary lineage VI of cyanobacteria. [source]


Two Genetically Distinct Populations of Colletotrichum gloeosporioides Penz.

JOURNAL OF PHYTOPATHOLOGY, Issue 3 2005
Causing Anthracnose Disease of Yam (Dioscorea spp.)
Abstract Variation within Colletotrichum gloeosporioides, the causal agent of yam anthracnose disease, is still poorly defined and this hinders breeding for resistance. Two morphotypes of C. gloeosporioides, designated slow-growing grey (SGG) and fast-growing salmon (FGS), are associated with anthracnose disease of yam in Nigeria. The morphotypes are distinguishable based on colony and conidial morphology, growth rate, virulence, as well as vegetative compatibility, but molecular differentiation of SGG and FGS strains is needed to facilitate epidemiological studies. Denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified small subunit (18S) rDNA fragments, and microsatellite-primed PCR (MP-PCR) genomic fingerprinting were employed to provide a basis for molecular differentiation of the morphotypes. DGGE analysis revealed patterns that clearly differentiated isolates of the aggressive defoliating SGG from the moderately virulent non-defoliating FGS strains. Genetic analysis based on 52 MP-PCR markers revealed highly significant differentiation between the SGG and FGS populations on yam (GST = 0.22; Nei's genetic identity = 0.85; , = 0.28, P < 0.001), indicating that the SGG and FGS morphotypes represent genetically differentiated populations. The results of the molecular typing using DGGE and MP-PCR analyses were consistent with the disease phenotype caused by the two morphotypes. Consequently, these molecular techniques might be used, at least partly, to replace time-consuming virulence studies on yam. [source]


Effects of the Prebiotics GroBiotic® -A and Inulin on the Intestinal Microbiota of Red Drum, Sciaenops ocellatus

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 4 2009
Gary Burr
Two separate feeding trials examined the effects of dietary supplementation of the prebiotics GroBiotic® -A and inulin on growth performance and gastrointestinal tract microbiota of the red drum, Sciaenops ocellatus. In the first feeding trial, fish meal-based diets without prebiotics or supplemented with either GroBiotic® -A or inulin at 1% of dry weight were fed to triplicate groups of juvenile red drum (initial weight of 2.6 g) in 110-L aquaria operated as a brackish water (7 ppt) recirculating system for 8 wk. In the second feeding trial, soybean meal/fish meal-based diets supplemented with either GroBiotic® -A or inulin at 1% of dry weight were fed to triplicate groups of red drum (initial weight of 15.8 g) in 110-L aquaria operated as either a common recirculating water system or closed system with individual biofilters (independent aquaria) for 6 wk. Supplementation of the prebiotics in either feeding trial did not alter weight gain, feed efficiency ratio, or protein efficiency ratio of red drum fed the various diets. In the second feeding trial, the culture system significantly affected weight gain, feed efficiency ratio, and protein efficiency ratio although there were no effects of dietary treatments on fish performance or whole-body protein, lipid, moisture, or ash. Denaturing gradient gel electrophoresis (DGGE) analysis of the gastrointestinal tract microbial community showed no effect of the dietary prebiotics as the microbial community appeared to be dominated by a single organism with very low diversity when compared with other livestock and fish species. DGGE of the microbial community in the biofilters of the independent aquariums showed a diverse microbial community that was not affected by the dietary prebiotics. [source]


Cultivation of low-temperature (15°C), anaerobic, wastewater treatment granules

LETTERS IN APPLIED MICROBIOLOGY, Issue 4 2009
J. O'Reilly
Abstract Aims:, Anaerobic sludge granules underpin high-rate waste-to-energy bioreactors. Granulation is a microbiological phenomenon involving the self-immobilization of several trophic groups. Low-temperature anaerobic digestion of wastes is of intense interest because of the economic advantages of unheated bioenergy production technologies. However, low-temperature granulation of anaerobic sludge has not yet been demonstrated. The aims of this study were to (i) investigate the feasibility of anaerobic sludge granulation in cold (15°C) bioreactors and (ii) observe the development of methanogenic activity and microbial community structure in developing cold granules. Methods and Results:, One mesophilic (R1; 37°C) and two low-temperature (R2 and R3, 15°C) laboratory-scale, expanded granular sludge bed bioreactors were seeded with crushed (diameter <0·4 mm) granules and were fed a glucose-based wastewater for 194 days. Bioreactor performance was assessed by chemical oxygen demand removal, biogas production, granule growth and temporal methanogenic activity. Granulation was observed in R2 and R3 (up to 33% of the sludge). Elevated hydrogenotrophic methanogenesis was observed in psychrophilically cultivated biomass, but acetoclastic methanogenic activity was also retained. Denaturing gradient gel electrophoresis of archaeal 16S rRNA gene fragments indicated that a distinct community was associated with developing and mature granules in the low-temperature (LT) bioreactors. Conclusions:, Granulation was observed at 15°C in anaerobic bioreactors and was associated with H2/CO2 -mediated methanogenesis and distinct community structure development. Significance and Impact of the Study:, Granulation underpins high-rate anaerobic waste treatment bioreactors. Most LT bioreactor trials have employed mesophilic seed sludge, and granulation <20°C was not previously documented. [source]


Comparative analysis of denaturing gradient gel electrophoresis and temporal temperature gradient gel electrophoresis in separating Escherichia coli uidA amplicons differing in single base substitutions

LETTERS IN APPLIED MICROBIOLOGY, Issue 6 2000
A.H. Farnleitner
A set of Escherichia coli freshwater isolates was chosen to compare the effectiveness of denaturing gradient gel electrophoresis (DGGE) vs temporal temperature gradient gel electrophoresis (TTGE) for separating homologous amplicons from the respective uidA region differing in one to seven single base substitutions. Both methods revealed congruent results but DGGE showed a five to eight times higher spatial separation of the uidA amplicons as compared with TTGE, although the experiments were performed at comparable denaturing gradients. In contrast to TTGE, DGGE displayed clear and focused bands. The results strongly indicated a significantly higher discrimination efficiency of the spatial chemical denaturing gradient as compared with the temporal temperature denaturing gradient for separating the uidA amplicons. Denaturing gradient gel electrophoresis proved to be highly efficient in the differentiation of E. coli uidA sequence types. [source]


Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2010
Katharina Kohls
Summary An intertidal hypersaline cyanobacterial mat from Abu Dhabi (United Arab Emirates) exhibited a reversible change in its surface colour within several hours upon changes in salinity of the overlying water. The mat surface was orange-reddish at salinities above 15% and turned dark green at lower salinities. We investigated this phenomenon using a polyphasic approach that included denaturing gradient gel electrophoresis, microscopy, high-performance liquid chromatography, hyperspectral imaging, absorption spectroscopy, oxygen microsensor measurements and modelling of salinity dynamics. Filaments of Microcoleus chthonoplastes, identified based on 16S rRNA sequencing and morphology, were found to migrate up and down when salinity was decreased below or increased above 15%, respectively, causing the colour change of the mat uppermost layer. Migration occurred in light and in the dark, and could be induced by different salts, not only NaCl. The influence of salinity-dependent and independent physico-chemical parameters, such as water activity, oxygen solubility, H2S, gravity and light, was excluded, indicating that the observed migration was due to a direct response to salt stress. We propose to term this salinity-driven cyanobacterial migration as ,halotaxis', a process that might play a vital role in the survival of cyanobacteria in environments exposed to continuous salinity fluctuations such as intertidal flats. [source]


Culture-independent evidence for the persistent presence and genetic diversity of microcystin-producing Anabaena (Cyanobacteria) in the Gulf of Finland

ENVIRONMENTAL MICROBIOLOGY, Issue 4 2009
David P. Fewer
Summary The late summer mass occurrences of cyanobacteria in the Baltic Sea are among the largest in the world. These blooms are rarely monotypic and are often composed of a diverse assemblage of cyanobacteria. The toxicity of the blooms is attributed to Nodularia spumigena through the production of the hepatotoxic nodularin. However, the microcystin hepatotoxins have also been reported from the Baltic Sea on a number of occasions. Recent evidence links microcystin production in the Gulf of Finland directly to the genus Anabaena. Here we developed a denaturing gradient gel electrophoresis (DGGE) method based on the mcyE microcystin synthetase gene and ndaF nodularin synthetase gene that allows the culture-independent discrimination of microcystin- and nodularin-producing cyanobacteria directly from environmental samples. We PCR-amplified microcystin and nodularin synthetase genes from environmental samples taken from the Gulf of Finland and separated them on a denaturing gradient gel using optimized conditions. Sequence analyses demonstrate that uncultured microcystin-producing Anabaena strains are genetically more diverse than previously demonstrated from cultured strains. Furthermore, our data show that microcystin-producing Anabaena are widespread in the open Gulf of Finland. Non-parametric statistical analysis suggested that salinity plays an important role in defining the distribution of microcystin-producing Anabaena. Our results indicate that microcystin-producing blooms are a persistent phenomenon in the Gulf of Finland. [source]


Niche separation of ammonia-oxidizing bacteria across a tidal freshwater marsh

ENVIRONMENTAL MICROBIOLOGY, Issue 11 2008
Hendrikus J. Laanbroek
Summary Like many functional groups or guilds of microorganisms, the group of ammonia-oxidizing bacteria (AOB) consists of a number of physiologically different species or lineages. These physiological differences suggest niche differentiation among these bacteria depending on the environmental conditions. Species of AOB might be adapted to different zones in the flooding gradient of a tidal marsh. This issue has been studied by sampling sediments from different sites and depths within a tidal freshwater marsh along the river Scheldt near the village of Appels in Belgium. Samples were taken in February, April, July and October 1998. Communities of AOB in the sediment were analysed on the basis of the 16S rRNA gene by application of polymerase chain reaction in combination with denaturing gradient gel electrophoresis (DGGE). In addition, moisture content and concentrations of ammonium and nitrate were determined as well as the potential ammonia-oxidizing activities. Six different DGGE bands belonging to the ,-subclass of the Proteobacteria were observed across the marsh. The community composition of AOB was determined by the elevation in the flooding gradient as well as by the sampling depth. The presence of plants was less important for the community composition of AOB. DGGE bands affiliated with the Nitrosospira lineage were mostly found in the upper part of the marsh and in the deeper layers of the sediment. Two of the three DGGE bands related to the Nitrosomonas oligotropha lineage were more broadly distributed over the marsh, but were predominantly found in the upper layers of the sediment. Members of the environmental Nitrosomonas lineage 5 were predominantly detected in the deeper layers in the lower parts of the marsh. Potential driving factors for niche differentiation are discussed. [source]


The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2008
Achim Schmalenberger
Summary Sulfonates are a key component of the sulfur present in agricultural soils. Their mobilization as part of the soil sulfur cycle is mediated by rhizobacteria, and involves the oxidoreductase AsfA. In this study, the effect of fertilization regime on rhizosphere bacterial asfA distribution was examined at the Broadbalk long-term wheat experiment, Rothamsted, UK, which was established in 1843, and has included a sulfur-free treatment since 2001. Direct isolation of desulfonating rhizobacteria from the wheat rhizospheres led to the identification of several Variovorax and Polaromonas strains, all of which contained the asfA gene. Rhizosphere DNA was isolated from wheat rhizospheres in plots fertilized with inorganic fertilizer with and without sulfur, with farmyard manure or from unfertilized plots. Genetic profiling of 16S rRNA gene fragments [denaturing gradient gel electrophoresis (DGGE)] from the wheat rhizospheres revealed that the level of inorganic sulfate in the inorganic fertilizer was correlated with changes in the general bacterial community structure and the betaproteobacterial community structure in particular. Community analysis at the functional gene level (asfA) showed that 40% of clones in asfAB clone libraries were affiliated to the genus Variovorax. Analysis of asfAB -based terminal restriction fragment length polymorphism (T-RFLP) fingerprints showed considerable differences between sulfate-free treatments and those where sulfate was applied. The results suggest the occurrence of desulfonating bacterial communities that are specific to the fertilization regime chosen and that arylsulfonates play an important role in rhizobacterial sulfur nutrition. [source]


Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2008
Ju-pei Shen
Summary The abundance and composition of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities under different long-term (17 years) fertilization practices were investigated using real-time polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). A sandy loam with pH (H2O) ranging from 8.3 to 8.7 was sampled in years 2006 and 2007, including seven fertilization treatments of control without fertilizers (CK), those with combinations of fertilizer nitrogen (N), phosphorus (P) and potassium (K): NP, NK, PK and NPK, half chemical fertilizers NPK plus half organic manure (1/2OMN) and organic manure (OM). The highest bacterial amoA gene copy numbers were found in those treatments receiving N fertilizer. The archaeal amoA gene copy numbers ranging from 1.54 × 107 to 4.25 × 107 per gram of dry soil were significantly higher than those of bacterial amoA genes, ranging from 1.24 × 105 to 2.79 × 106 per gram of dry soil, which indicated a potential role of AOA in nitrification. Ammonia-oxidizing bacteria abundance had significant correlations with soil pH and potential nitrification rates. Denaturing gradient gel electrophoresis patterns revealed that the fertilization resulted in an obvious change of the AOB community, while no significant change of the AOA community was observed among different treatments. Phylogenetic analysis showed a dominance of Nitrosospira -like sequences, while three bands were affiliated with the Nitrosomonas genus. All AOA sequences fell within cluster S (soil origin) and cluster M (marine and sediment origin). These results suggest that long-term fertilization had a significant impact on AOB abundance and composition, while minimal on AOA in the alkaline soil. [source]


Microbial community structure of ethanol type fermentation in bio-hydrogen production

ENVIRONMENTAL MICROBIOLOGY, Issue 5 2007
Nanqi Ren
Summary Three continuous stirred-tank reactors (CSTRs) were used for H2 production from molasses wastewater at influent pH of 6.0,6.5 (reactor A), 5.5,6.0 (reactor B), or 4.0,4.5 (reactor C). After operation for 28 days, the microbial community formed ethanol type (C), propionate type (A) and ethanol-butyrate-mixed type (B) fermentation. The H2 production rate was the highest for ethanol type fermentation, 0.40 l (g VSS),1 day,1 or 0.45 l H2 (g COD removed),1. Microbial community dynamics and diversity were analysed using double-gradient denaturing gradient gel electrophoresis (DG-DGGE). Denaturing gradient gel electrophoresis profiles indicated that the community structures changed quickly in the first 14 days. Phylogenetic analysis indicated that the dominant bacterial groups were low G+C Gram-positive bacteria, Bacteroides, ,-Proteobacteria and Actinobacteria; ,-Proteobacteria, ,-Proteobacteria, ,-Proteobacteria and Spirochaetes were also presented as minor groups in the three reactors. H2 -producing bacteria were affiliated with Ethanoligenens, Acetanaerobacterium, Clostridium, Megasphaera, Citrobacter and Bacteroides. An ethanol-based H2 -producing bacterium, Ethanoligenens harbinense CGMCC1152, was isolated from reactor C and visualized using fluorescence in situ hybridization (FISH) to be 19% of the eubacteria in reactor C. In addition, isoenzyme activity staining for alcohol dehydrogenase (ADH) supported that the majority of ethanol-producing bacteria were affiliated with Ethanoligenens in the microbial community. [source]


Detection of bacteria associated with harmful algal blooms from coastal and microcosm environments using electronic microarrays

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2007
Edward A. Barlaan
Summary With the global expansion of harmful algal blooms (HABs), several measures, including molecular approaches, have been undertaken to monitor its occurrence. Many reports have indicated the significant roles of bacteria in controlling algal bloom dynamics. Attempts have been made to utilize the bacteria/harmful algae relationship in HAB monitoring. In this study, bacterial assemblages monitored during coastal HABs and bacterial communities in induced microcosm blooms were investigated. Samples were analysed using denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene. DGGE bands with peculiar patterns before, during, and after algal blooms were isolated and identified. Probes for six ribotypes representing organisms associated with Chatonella spp., Heterocapsa circularisquama, or Heterosigma akashiwo were used for analysis on NanoChip electronic microarray. In addition, a new approach using cultured bacteria species was developed to detect longer (533 bp) polymerase chain reaction-amplified products on the electronic microarray. The use of fluorescently labelled primers allowed the detection of individual species in single or mixed DNA conditions. The developed approach enabled the detection of the presence or absence and relative abundance of the HAB-related ribotypes in coastal and microcosm blooms. This study indicates the ability of electronic microarray platform to detect or monitor bacteria in natural and induced environments. [source]


Cultivation-independent analysis of Pseudomonas species in soil and in the rhizosphere of field-grown Verticillium dahliae host plants

ENVIRONMENTAL MICROBIOLOGY, Issue 12 2006
Rodrigo Costa
Summary Despite their importance for rhizosphere functioning, rhizobacterial Pseudomonas spp. have been mainly studied in a cultivation-based manner. In this study a cultivation-independent method was used to determine to what extent the factors plant species, sampling site and year-to-year variation influence Pseudomonas community structure in bulk soil and in the rhizosphere of two Verticillium dahliae host plants, oilseed rape and strawberry. Community DNA was extracted from bulk and rhizosphere soil samples of flowering plants collected at three different sites in Germany in two consecutive years. Pseudomonas community structure and diversity were assessed using a polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) system to fingerprint Pseudomonas -specific 16S rRNA gene fragments amplified from community DNA. Dominant and differentiating DGGE bands were excised from the gels, cloned and sequenced. The factors sampling site, plant species and year-to-year variation were shown to significantly influence the community structure of Pseudomonas in rhizosphere soils. The composition of Pseudomonas 16S rRNA gene fragments in the rhizosphere differed from that in the adjacent bulk soil and the rhizosphere effect tended to be plant-specific. The clone sequences of most dominant bands analysed belonged to the Pseudomonas fluorescens lineage and showed closest similarity to culturable Pseudomonas known for displaying antifungal properties. This report provides a better understanding of how different factors drive Pseudomonas community structure and diversity in bulk and rhizosphere soils. [source]


Ascomycete communities in the rhizosphere of field-grown wheat are not affected by introductions of genetically modified Pseudomonas putida WCS358r

ENVIRONMENTAL MICROBIOLOGY, Issue 11 2005
Mareike Viebahn
Summary A long-term field experiment (1999,2002) was conducted to monitor effects on the indigenous microflora of Pseudomonas putida WCS358r and two transgenic derivatives constitutively producing phenazine-1-carboxylic acid (PCA) or 2,4-diacetylphloroglucinol (DAPG). The strains were introduced as seed coating on wheat into the same field plots each year. Rhizosphere populations of ascomycetes were analysed using denaturing gradient gel electrophoresis (DGGE). To evaluate the significance of changes caused by the genetically modified microorganisms (GMMs), they were compared with effects caused by a crop rotation from wheat to potato. In the first year, only the combination of both GMMs caused a significant shift in the ascomycete community. After the repeated introductions this effect was no longer evident. However, cropping potato significantly affected the ascomycete community. This effect persisted into the next year when wheat was grown. Clone libraries were constructed from samples taken in 1999 and 2000, and sequence analysis indicated ascomycetes of common genera to be present. Most species occurred in low frequencies, distributed almost evenly in all treatments. However, in 1999 Microdochium occurred in relatively high frequencies, whereas in the following year no Microdochium species were detected. On the other hand, Fusarium -like organisms were low in 1999, and increased in 2000. Both the DGGE and the sequence analysis revealed that repeated introduction of P. putida WCS358r had no major effects on the ascomycete community in the wheat rhizosphere, but demonstrated a persistent difference between the rhizospheres of potato and wheat. [source]


Contrasting microcystin production and cyanobacterial population dynamics in two Planktothrix -dominated freshwater lakes

ENVIRONMENTAL MICROBIOLOGY, Issue 10 2005
Ingmar Janse
Summary Microcystin concentrations in two Dutch lakes with an important Planktothrix component were related to the dynamics of cyanobacterial genotypes and biovolumes. Genotype composition was analysed by using denaturing gradient gel electrophoresis (DGGE) profiling of the intergenic transcribed spacer region of the rrn operon (rRNA-ITS), and biovolumes were measured by using microscopy. In Lake Tjeukemeer, microcystins were present throughout summer (maximum concentration 30 µg l,1) while cyanobacterial diversity was low and very constant. The dominant phototroph was Planktothrix agardhii. In contrast, Lake Klinckenberg showed a high microcystin peak (up to 140 µg l,1) of short duration. In this lake, cyanobacterial diversity was higher and very dynamic with apparent genotype successions. Several genotypes derived from DGGE field profiles matched with genotypes from cultures isolated from field samples. The microcystin peak measured in Lake Klinckenberg could be confidently linked to a bloom of Planktothrix rubescens, as microscopic and genotypic analysis showed identity of bloom samples and a toxin-producing P. rubescens culture. Toxin-producing genotypes were detected in the microbial community before they reached densities at which they were detected by using microscopy. Cyanobacterial biovolumes provided additional insights in bloom dynamics. In both lakes, the microcystin content per cell was highest at the onset of the blooms. Our results suggest that while genotypic characterization of a lake can be valuable for detection of toxic organisms, for some lakes a monitoring of algal biomass has sufficient predictive value for an assessment of toxin production. [source]


Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing

ENVIRONMENTAL MICROBIOLOGY, Issue 4 2005
Ross Larue
Summary It is well recognized that a dynamic biofilm develops upon plant biomass in the herbivore gastrointestinal tract, but this component of the microbiome has not previously been specifically sampled, or directly compared with the biodiversity present in the planktonic fraction of digesta. In this study, the digesta collected from four sheep fed two different diets was separated into three fractions: the planktonic phase, and the microbial populations either weakly or tightly adherent to plant biomass. The community DNA prepared from each fraction was then subjected to both ribosomal intergenic spacer analysis (RISA) and denaturing gradient gel electrophoresis (DGGE). Both types of analysis showed that dietary factors influence community structure, and that the adherent fractions produced more complex profiles. The RIS-clone libraries prepared from the planktonic and adherent populations were then subjected to restriction fragment length polymorphism (RFLP) and DNA sequence analyses, which resulted in a far greater degree of discrimination among the fractions. Although many of the sequenced clones from the adherent populations were assigned to various clusters within the low G+C Gram-positive bacteria, the clone libraries from animals consuming an all-grass diet were largely comprised of novel lineages of Clostridium, while in animals consuming the starch-containing diet, Selenomonas and Ruminococcus spp. were the dominant low G+C Gram-positive bacteria. Additionally, the libraries from hay-fed animals also contained clones most similar to asaccharolytic Clostridia, and other Gram-positive bacteria that specialize in the transformation of plant phenolic compounds and the formation of cinnamic, phenylacetic and phenylpropionic acids. These results reveal, for the first time, the phylogeny of adherent subpopulations that specialize in the transformation of plant lignins and other secondary compounds, which potentiate polysaccharide hydrolysis by other members of the biofilm. [source]


Biogeography of bacteria associated with the marine sponge Cymbastela concentrica

ENVIRONMENTAL MICROBIOLOGY, Issue 3 2005
Michael W. Taylor
Summary Recent debate regarding microbial biogeography has focused largely on free-living microbes, yet those microbes associated with host organisms are also of interest from a biogeographical perspective. Marine eukaryotes and associated bacteria should provide ideal systems in which to consider microbial biogeography, as (i) bacteria in seawater should be able to disperse among individuals of the same host species, yet (ii) potential for adaptation to particular hosts (and thus speciation) also exists. We used 16S rDNA-DGGE (denaturing gradient gel electrophoresis) to examine geographic variability in bacterial community composition in the marine sponge Cymbastela concentrica. Denaturing gradient gel electrophoresis banding patterns (and phylogenetic analysis of excised DGGE bands) indicated different communities in Cymbastela concentrica from tropical versus temperate Australia. In contrast, communities were very similar over a 500-km portion of the sponge's temperate range. Variation in bacterial community composition was also considered with respect to ocean current patterns. We speculate that the divergent communities in different parts of the sponge's range provide evidence of endemism attributed to host association, although variation in environmental factors such as light and temperature could also explain the observed results. Interestingly, bacterial communities in seawater varied much less between tropical and temperate locations than did those in C. concentrica, supporting the concept of widespread dispersal among these free-living microbes. [source]


Microsite-dependent changes in methanogenic populations in a boreal oligotrophic fen

ENVIRONMENTAL MICROBIOLOGY, Issue 11 2003
Pierre E. Galand
Summary Wetlands, including peatlands, are the main source of natural methane emission. Well-defined fen microsites have different methane emissions rates, but it is not known whether the methane-producing Archaea communities vary at these sites. Possible horizontal variations of communities, in a natural oligotrophic fen, were analysed by characterizing the methanogens from two well-defined microsites: Eriophorum lawn and Hummock. Community structures were studied at two different layers of the fen, showing, respectively, high and low methane production. The structure of methanogen populations was determined using molecular techniques targeting the 16SrRNA gene and combined denaturing gradient gel electrophoresis (DGGE) and restriction fragment length polymorphism (RFLP) analysis. Results subjected to non-metric multidimensional scaling (MDS), diversity indices calculation and phylogenetic analysis revealed that upper layer communities changed with site while deeper layer communities remained the same. Phylogenetic analyses revealed six different clusters of sequences grouping with only two known orders of methanogens. Upper layers of Hummock were dominated by sequences clustering with members of Methanomicrobiales and sequences dominating the upper part of the Eriophorum lawn were related to members of the order Methanosarcinales. Novel methanogenic sequences were found at both sites at both depths. Vegetation characterizing the microsites probably influences the microbial communities in the layers of the fen where methane is produced. [source]


Bacterial community structure and function in a metal-working fluid

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2003
Christopher J. Van Der Gast
Summary The diversity of bacterial populations colonizing spatially and temporally separated samples of the same metal-working fluid (MWF) formulation was investigated. Analyses were performed with a view to improve strategies for bioaugmentation of waste MWF in bioreactor systems and prevention of in-use MWF biodeterioration in engineering workshops. Significantly, complementary phenotypic, genotypic and in situ methods revealed that the bacterial communities in operationally exhausted MWFs had low diversity and were similar in species composition from different locations and uses. Of the 179 bacterial isolates studied, only 11 genera and 15 species were identified using fatty acid methyl ester (FAME) analysis, with culture independent analyses by 16S rDNA denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization being congruent with these FAME data. In order to gain some insight into functional role of detected populations, we correlated the MWF chemical composition and potential pollution load with bacterial abundance and community composition detected within samples. [source]


Spatial and temporal variability of the bacterial community in different chemotypes of the New Zealand marine sponge Mycale hentscheli

FEMS MICROBIOLOGY ECOLOGY, Issue 3 2010
Sally A. Anderson
Abstract Molecular fingerprinting of 16S rRNA genes using terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) was used to characterize the temporal and spatial variability among sponge-associated bacteria from Mycale hentscheli having distinct bioactive chemotypes. Cluster analysis of T-RFLP and DGGE profiles from M. hentscheli chemotypes largely grouped sponge microbial diversity to their distinct chemotype pattern. Repeat sampling of individual M. hentscheli at one location over a 21-month period showed that the T-RFLP profiles from individual sponges had similarity indices ranging from 60% to 82% and calculated DGGE similarities between 23% and 95%. However, a portion (>35% from DGGE and >19% from T-RFLP) of the microbial community from M. hentscheli appeared to be spatially conserved through all M. hentscheli populations. Sequence analysis of DGGE band fragments showed a similarity among the bands originating from different individuals, different times, and different locations. The sponge-associated relationship of these bands was confirmed, with sequences having similarity to sponge-associated bacteria reported from global locations. This study highlights the spatial and temporal complexity in the distribution of bacterial communities associated with different chemotypes of the marine sponge M. hentscheli. [source]


Response of bacterioplankton community structures to hydrological conditions and anthropogenic pollution in contrasting subtropical environments

FEMS MICROBIOLOGY ECOLOGY, Issue 3 2009
Rui Zhang
Abstract Bacterioplankton community structures under contrasting subtropical marine environments (Hong Kong waters) were analyzed using 16S rRNA gene denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of predominant bands for samples collected bimonthly from 2004 to 2006 at five stations. Generally, bacterial abundance was significantly higher in the summer than in the winter. The general seasonal variations of the bacterial community structure, as indicated by cluster analysis of the DGGE pattern, were best correlated with temperature at most stations, except for the station close to a sewage discharge outfall, which was best explained by pollution-indicating parameters (e.g. biochemical oxygen demand). Anthropogenic pollutions appear to have affected the presence and the intensity of DGGE bands at the stations receiving discharge of primarily treated sewage. The relative abundance of major bacterial species, calculated by the relative intensity of DGGE bands after PCR amplification, also indicated the effects of hydrological or seasonal variations and sewage discharges. For the first time, a systematic molecular fingerprinting analysis of the bacterioplankton community composition was carried out along the environmental and pollution gradient in a subtropical marine environment, and it suggests that hydrological conditions and anthropogenic pollutions altered the total bacterial community as well as the dominant bacterial groups. [source]


Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2007
Aurélie Cébron
Abstract A considerable amount of methane produced during decomposition of landfill waste can be oxidized in landfill cover soil by methane-oxidizing bacteria (methanotrophs) thus reducing greenhouse gas emissions to the atmosphere. The identity of active methanotrophs in Roscommon landfill cover soil, a slightly acidic peat soil, was assessed by DNA-stable isotope probing (SIP). Landfill cover soil slurries were incubated with 13C-labelled methane and under either nutrient-rich nitrate mineral salt medium or water. The identity of active methanotrophs was revealed by analysis of 13C-labelled DNA fractions. The diversity of functional genes (pmoA and mmoX) and 16S rRNA genes was analyzed using clone libraries, microarrays and denaturing gradient gel electrophoresis. 16S rRNA gene analysis revealed that the cover soil was mainly dominated by Type II methanotrophs closely related to the genera Methylocella and Methylocapsa and to Methylocystis species. These results were supported by analysis of mmoX genes in 13C-DNA. Analysis of pmoA gene diversity indicated that a significant proportion of active bacteria were also closely related to the Type I methanotrophs, Methylobacter and Methylomonas species. Environmental conditions in the slightly acidic peat soil from Roscommon landfill cover allow establishment of both Type I and Type II methanotrophs. [source]


PCR profiling of ammonia-oxidizer communities in acidic soils subjected to nitrogen and sulphur deposition

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2007
Christoph Stephan Schmidt
Abstract Communities of ammonia-oxidizing bacteria (AOB) were characterized in two acidic soil sites experimentally subjected to varying levels of nitrogen and sulphur deposition. The sites were an acidic spruce forest soil in Deepsyke, Southern Scotland, with low background deposition, and a nitrogen-saturated upland grass heath in Pwllpeiran, North Wales. Betaproteobacterial ammonia-oxidizer 16S rRNA and ammonia monooxygenase (amoA) genes were analysed by cloning, sequencing and denaturing gradient gel electrophoresis (DGGE). DGGE profiles of amoA and 16S rRNA gene fragments from Deepsyke soil in 2002 indicated no effect of nitrogen deposition on AOB communities, which contained both Nitrosomonas europaea and Nitrosospira. In 2003, only Nitrosospira could be detected, and no amoA sequences could be retrieved. These results indicate a decrease in the relative abundance of AOB from the year 2002 to 2003 in Deepsyke soil, which may be the result of the exceptionally low rainfall in spring 2003. Nitrosospira -related sequences from Deepsyke soil grouped in all clusters, including cluster 1, which typically contains only sequences from marine environments. In Pwllpeiran soil, 16S rRNA gene libraries were dominated by nonammonia oxidizers and no amoA sequences were detectable. This indicates that autotrophic AOB play only a minor role in these soils even at high nitrogen deposition. [source]


PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium coccoides,Eubacterium rectale group in the human intestinal microbiota

FEMS MICROBIOLOGY ECOLOGY, Issue 3 2006
Johanna Maukonen
Abstract As the Clostridium coccoides,Eubacterium rectale (Erec; clostridial phylogenetic cluster XIVa) group is one of the major groups of the human intestinal microbiota, DNA- and RNA-based population analysis techniques (denaturing gradient gel electrophoresis; DGGE) were developed and applied to assess the diversity and temporal stability (6 months,2 years) of this faecal clostridial microbiota in 12 healthy adults. The stability of the Erec group was compared with the stability of the predominant bacterial microbiota, which was also assessed with PCR-DGGE. In addition, the Erec group was quantified with a hybridization-based method. According to our results, the Erec group was diverse in each subject, but interindividual uniqueness was not as clear as that of the predominant bacteria. The Erec group was found to be temporally as stable as the predominant bacteria. Over 200 clones obtained from two samples proved the developed method to be specific. However, the amount of bacteria belonging to the Erec group was not related to the diversity of that same bacterial group. In conclusion, the newly developed DGGE method proved to be a valuable and specific tool for the direct assessment of the stability of the Erec group, demonstrating diversity in addition to short-term stability in most of the subjects studied. [source]


On the reproducibility of microcosm experiments , different community composition in parallel phototrophic biofilm microcosms

FEMS MICROBIOLOGY ECOLOGY, Issue 2 2006
Guus Roeselers
Abstract Phototrophic biofilms were cultivated simultaneously using the same inoculum in three identical flow-lane microcosms located in different laboratories. The growth rates of the biofilms were similar in the different microcosms, but denaturing gradient gel electrophoresis (DGGE) analysis of both 16S and 18S rRNA gene fragments showed that the communities developed differently in terms of species richness and community composition. One microcosm was dominated by Microcoleus and Phormidium species, the second microcosm was dominated by Synechocystis and Phormidium species, and the third microcosm was dominated by Microcoleus- and Planktothrix -affiliated species. No clear effect of light intensity on the cyanobacterial community composition was observed. In addition, DGGE profiles obtained from the cultivated biofilms showed a low resemblance with the profiles derived from the inoculum. These findings demonstrate that validation of reproducibility is essential for the use of microcosm systems in microbial ecology studies. [source]


Microbial community dynamics in nutrient-pulsed chemostats

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2006
Militza Carrero-Colón
Abstract In nature, microbes are subject to nutrient fluxes. As the periodicity of nutrient flux lengthens, different physiological traits may be selected. The competitive exclusion principle stipulates that one organism will dominate these systems; however, interspecies interactions may produce a dynamic microbial community. These issues were investigated in chemostats pulsed with gelatin. Chemostats were run over 30 days with substrate addition continuously or at intervals of 0.5, 1 or 3 days. Growth rates were similar between pulse intervals. Ectoaminopeptidase activity levels remained relatively constant within a pulse interval. Bacterial community structure was monitored using denaturing gradient gel electrophoresis of PCR products of the 16S rRNA gene. There were dynamic changes at all periodicities; however, the pace of these changes decreased over time. Final communities were not identical between different treatments. The structure of persistent vs. active microbial populations was compared by denaturing gradient gel electrophoresis of the PCR and reverse transcriptase-PCR amplicons of 16S rDNA and rRNA templates, respectively. For all the chemostats, the rRNA profiles were not identical to the rDNA profiles for a sample. These experiments demonstrate that complex community dynamics can occur under environmental heterogeneities that are modest relative to those found in natural aquatic habitats. Furthermore, the physiological functionality of these dynamic communities was stable. [source]