Home About us Contact | |||
Delayed Cell Death (delayed + cell_death)
Selected AbstractsIschemia-induced modifications in hippocampal CA1 stratum radiatum excitatory synapsesHIPPOCAMPUS, Issue 10 2006Tatiana Kovalenko Abstract Relatively mild ischemic episode can initiate a chain of events resulting in delayed cell death and significant lesions in the affected brain regions. We studied early synaptic modifications after brief ischemia modeled in rats by transient vessels' occlusion in vivo or oxygen,glucose deprivation in vitro and resulting in delayed death of hippocampal CA1 pyramidal cells. Electron microscopic analysis of excitatory spine synapses in CA1 stratum radiatum revealed a rapid increase of the postsynaptic density (PSD) thickness and length, as well as formation of concave synapses with perforated PSD during the first 24 h after ischemic episode, followed at the long term by degeneration of 80% of synaptic contacts. In presynaptic terminals, ischemia induced a depletion of synaptic vesicles and changes in their spatial arrangement: they became more distant from active zones and had larger intervesicle spacing compared to controls. These rapid structural synaptic changes could be implicated in the mechanisms of cell death or adaptive plasticity. Comparison of the in vivo and in vitro model systems used in the study demonstrated a general similarity of these early morphological changes, confirming the validity of the in vitro model for studying synaptic structural plasticity. © 2006 Wiley-Liss, Inc. [source] Protein aggregation in postsynaptic density after transient brain ischemiaJOURNAL OF NEUROCHEMISTRY, Issue 2003M. Ber, sewicz Brief cerebral ischemia causes changes in synaptic transmission and in consequence in neuronal function manifested in delayed cell death of CA1 hippocampal region. Postsynaptic density (PSD) is composed by a network of interacting proteins, including scaffolding proteins, neurotransmitter receptors, cytoskeletal proteins and protein kinases. PSD dynamically modulates signal transduction what influence the cell fate. We investigated the composition of the PSD network and effect of ischemia on its complexity. Two experimental procedures were applied. The interaction between PSD-95 and Src, Fyn, Raf-1, paxilin or NMDA receptor subunits were explored using coimmunoprecipitation method. In addition, the effect of ischemia-reperfusion on the density of PSD were evaluated by measurement of is solubility. We find out the decrease in solubility of the PSD-95, NR2A, NR2B and Raf-1. Of interest, the latter was restricted to surviving regions of hippocampus. Acknowledgement:, Financed by PBZ-KBN-002/CD/P05/2000. [source] Pregnenolone Sulfate, a Naturally Occurring Excitotoxin Involved in Delayed Retinal Cell DeathJOURNAL OF NEUROCHEMISTRY, Issue 6 2000C. Cascio Abstract: The present study was designed to investigate the neurosteroid pregnenolone sulfate (PS), known for its ability to modulate NMDA receptors and interfere with acute excitotoxicity, in delayed retinal cell death. Three hours after exposure of the isolated and intact retina to a 30-min PS pulse, DNA fragmentation as assessed by genomic DNA gel electrophoresis and a modified in situ terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method appeared concurrently with an increase in superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) levels. At 7 h, the increased amount of DNA laddering was accompanied by a higher number of TUNEL-positive cells in the inner nuclear and ganglion cell layers. Necrotic signs were characterized by DNA smear migration, lactate dehydrogenase (LDH) release, and damage mainly in the inner nuclear layer. PS-induced delayed cell death was markedly reduced by the NMDA receptor antagonists 4-(3-phosphonopropyl)-2-piperazinecarboxylic acid and 3,-hydroxy-5,-pregnan-20-one sulfate but completely blocked after concomitant addition of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. Steroids with antioxidant properties (progesterone, dehydroepiandrosterone and its sulfate ester, and 17,-estradiol) differently prevented PS-induced delayed cell death. Cycloheximide treatment protected against DNA fragmentation and LDH release but failed to prevent the rise in SOD activity and TBARS level. We conclude that a brief PS pulse causes delayed cell death in a slowly evolving apoptotic fashion characterized by a cycloheximide-sensitive death program downstream of reactive oxygen species generation and lipid peroxidation, turning into secondary necrosis in a retinal cell subset. [source] In-vivo visualization of phagocytotic cells in rat brains after transient ischemia by USPIONMR IN BIOMEDICINE, Issue 4 2002M. Rausch Abstract Cerebral ischemia provokes tissue damage by two major patho-physiological mechanisms. Direct cell necrosis is induced by diminished access of neurons and glia to essential nutrients such as glucose and oxygen leading to energy failure. A second factor of cellular loss is related to the activation of immune-competent cells within and around the primary infarct. While granulocytes and presumably monocytes are linked to the no-reflow phenomenon, activated microglia cells and monocytes can release cytotoxic substrates, which cause delayed cell death. As a consequence the infarct volume will increase, despite restoration of cerebral perfusion. In the past, visualization of immune competent cells was only possible by histological analysis of post-mortem tissue. However, contrast agents based on small particles of iron oxide are known to accumulate in organs rich in cells with phagocytotic function. These particles can be tracked in vivo by MRI methods based on their relaxation properties. In the present study, the spatio-temporal distribution of USPIO particles was monitored in a rat model of transient cerebral infarction using T1 - and T2 -weighted MRI sequences. USPIO were detected in vessels at 24,h after administration. At later time points specific accumulation of USPIO was observed within the infarcted hemisphere, with maximal signal enhancement on day 2. Their detectability based on T1 -contrast disappeared between day 4 and day 7. Immuno-histochemically (IHC) stains confirmed the presence of macrophages, presumably blood-derived monocytes within areas of T1 signal enhancement. Direct visualization of iron-burdened macrophages by IHC was only possible later than day 3 after occlusion. Copyright © 2002 John Wiley & Sons, Ltd. [source] Postischemic treatment of neonatal cerebral ischemia should target autophagy,ANNALS OF NEUROLOGY, Issue 3 2009Julien Puyal PhD Objective To evaluate the contributions of autophagic, necrotic, and apoptotic cell death mechanisms after neonatal cerebral ischemia and hence define the most appropriate neuroprotective approach for postischemic therapy. Methods Rats were exposed to transient focal cerebral ischemia on postnatal day 12. Some rats were treated by postischemic administration of pan-caspase or autophagy inhibitors. The ischemic brain tissue was studied histologically, biochemically, and ultrastructurally for autophagic, apoptotic, and necrotic markers. Results Lysosomal and autophagic activities were increased in neurons in the ischemic area from 6 to 24 hours postinjury, as shown by immunohistochemistry against lysosomal-associated membrane protein 1 and cathepsin D, by acid phosphatase histochemistry, by increased expression of autophagosome-specific LC3-II and by punctate LC3 staining. Electron microscopy confirmed the presence of large autolysosomes and putative autophagosomes in neurons. The increases in lysosomal activity and autophagosome formation together demonstrate increased autophagy, which occurred mainly in the border of the lesion, suggesting its involvement in delayed cell death. We also provide evidence for necrosis near the center of the lesion and apoptotic-like cell death in its border, but in nonautophagic cells. Postischemic intracerebroventricular injections of autophagy inhibitor 3-methyladenine strongly reduced the lesion volume (by 46%) even when given >4 hours after the beginning of the ischemia, whereas pan-caspase inhibitors, carbobenzoxy-valyl-alanyl-aspartyl(OMe)-fluoromethylketone and quinoline-val-asp(OMe)-Ch2-O-phenoxy, provided no protection. Interpretation The prominence of autophagic neuronal death in the ischemic penumbra and the neuroprotective efficacy of postischemic autophagy inhibition indicate that autophagy should be a primary target in the treatment of neonatal cerebral ischemia. Ann Neurol 2009 [source] |