Home About us Contact | |||
Deformation History (deformation + history)
Selected AbstractsCenozoic Stratigraphy Deformation History in the Central and Eastern of Qaidam Basin by the Balance Section Restoration and its ImplicationACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2009Dongliang LIU Abstract: The Qaidam Basin, located in the northern margin of the Qinghai,Tibet Plateau, is a large Mesozoic,Cenozoic basin, and bears huge thick Cenozoic strata. The geologic events of the Indian-Eurasian plate,plate collision since ,55 Ma have been well recorded. Based on the latest progress in high-resolution stratigraphy, a technique of balanced section was applied to six pieces of northeast-southwest geologic seismic profiles in the central and eastern of the Qaidam Basin to reconstruct the crustal shortening deformation history during the Cenozoic collision. The results show that the Qaidam Basin began to shorten deformation nearly synchronous to the early collision, manifesting as a weak compression, the deformation increased significantly during the Middle and Late Eocene, and then weakened slightly and began to accelerate rapidly since the Late Miocene, especially since the Quaternary, reflecting this powerful compressional deformation and rapid uplift of the northern Tibetan Plateau around the Qaidam Basin. [source] Deformation history of the eclogite- and jadeitite-bearing mélange from North Motagua Fault Zone, Guatemala: insights in the processes of a fossil subduction channelGEOLOGICAL JOURNAL, Issue 2 2009Michele Marroni Abstract In Guatemala, along the northern side of the Motagua Valley, a mélange consisting of blocks of eclogite and jadeitite set in a metaserpentinitic and metasedimentary matrix crops out. The metasedimentary rocks display a complex deformation history that includes four tectonic phases, from D1 to D4. The D1 phase occurs only as a relic and is characterized by a mineral assemblage developed under pressure temperature (P,T) conditions of 1.00,1.25,GPa and 206,263°C. The D2 phase, characterized by isoclinal folds, schistosity and mineral/stretching lineation, developed at P,T conditions of 0.70,1.20,GPa and 279,409°C. The following D3 and D4 phases show deformations developed at shallower structural levels. Whereas the D1 phase can be interpreted as the result of underplating of slices of oceanic lithosphere during an intraoceanic subduction, the following phases have been acquired by the mélange during its progressive exhumation through different mechanisms. The deformations related to the D2 and D3 phases can be regarded as acquired by extrusion of the mélange within a subduction channel during a stage of oblique subduction. In addition, the structural evidences indicate that the coupling and mixing of different blocks occurred during the D2 phase, as a result of flow reverse and upward trajectory in the subduction channel. By contrast, the D4 phase can be interpreted as related to extension at shallow structural levels. In this framework, the exhumation-related structures in the mélange indicate that this process, probably long-lived, developed through different mechanisms, active in the subduction channel through time. Copyright © 2009 John Wiley & Sons, Ltd. [source] Deformation during exhumation of medium- and high-grade metamorphic rocks in the Variscan chain in northern Sardinia (Italy)GEOLOGICAL JOURNAL, Issue 3 2009Rodolfo Carosi Abstract The Anglona and SW Gallura regions represent key places to investigate the tectonic evolution of medium- and high-grade metamorphic rocks cropping out in northern Sardinia (Italy). From south to north we distinguish two different metamorphic complexes recording similar deformation histories but different metamorphic evolution: the Medium Grade Metamorphic Complex (MGMC) and the High Grade Metamorphic Complex (HGMC). After the initial collisional stage (D1 deformation phase), both complexes were affected by three contractional deformational phases (D2, D3 and D4) followed by later extensional tectonics. The D2 deformation phase was the most significant event producing an important deformation partitioning that produced localized shearing and folding domains at the boundary between the two metamorphic complexes. We highlight the presence of two previously undocumented systems of shear belts with different kinematics but analogous orientation in the axial zone of Sardinia. They became active at the boundary between the MGMC and HGMC from the beginning of D2. They formed a transpressive regime responsible for the exhumation of the medium- and high-grade metamorphic rocks, and overall represent a change from orthogonal to orogen-parallel tectonic transport. Copyright © 2008 John Wiley & Sons, Ltd. [source] Mechanical Response Analysis and Power Generation by Single-Cell StretchingCHEMPHYSCHEM, Issue 4 2005Alexandre Micoulet Dr. Abstract To harvest useful information about cell response due to mechanical perturbations under physiological conditions, a cantilever-based technique was designed, which allowed precise application of arbitrary forces or deformation histories on a single cell in vitro. Essential requirements for these investigations are a mechanism for applying an automated cell force and an induced-deformation detection system based on fiber-optical force sensing and closed loop control. The required mechanical stability of the setup can persist for several hours since mechanical drifts due to thermal gradients can be eliminated sufficiently (these gradients are caused by local heating of the cell observation chamber to 37,°C). During mechanical characterization, the cell is visualized with an optical microscope, which enables the simultaneous observation of cell shape and intracellular morphological changes. Either the cell elongation is observed as a reaction against a constant load or the cell force is measured as a response to constant deformation. Passive viscoelastic deformation and active cell response can be discriminated. The active power generated during contraction is in the range of Pmax=10,16Watts, which corresponds to 2500 ATP molecules,s,1at 10 kBT/molecule. The ratio of contractive to dissipative power is estimated to be in the range of 10,2. The highest forces supported by the cell suggest that about 104molecular motors must be involved in contraction. This indicates an energy-conversion efficiency of approximately 0.5. Our findings propose that, in addition to the recruitment of cell-contractile elements upon mechanical stimulation, the cell cytoskeleton becomes increasingly crosslinked in response to a mechanical pull. Quantitative stress,strain data, such as those presented here, may be employed to test physical models that describe cellular responses to mechanical stimuli. [source] Deformation history of the eclogite- and jadeitite-bearing mélange from North Motagua Fault Zone, Guatemala: insights in the processes of a fossil subduction channelGEOLOGICAL JOURNAL, Issue 2 2009Michele Marroni Abstract In Guatemala, along the northern side of the Motagua Valley, a mélange consisting of blocks of eclogite and jadeitite set in a metaserpentinitic and metasedimentary matrix crops out. The metasedimentary rocks display a complex deformation history that includes four tectonic phases, from D1 to D4. The D1 phase occurs only as a relic and is characterized by a mineral assemblage developed under pressure temperature (P,T) conditions of 1.00,1.25,GPa and 206,263°C. The D2 phase, characterized by isoclinal folds, schistosity and mineral/stretching lineation, developed at P,T conditions of 0.70,1.20,GPa and 279,409°C. The following D3 and D4 phases show deformations developed at shallower structural levels. Whereas the D1 phase can be interpreted as the result of underplating of slices of oceanic lithosphere during an intraoceanic subduction, the following phases have been acquired by the mélange during its progressive exhumation through different mechanisms. The deformations related to the D2 and D3 phases can be regarded as acquired by extrusion of the mélange within a subduction channel during a stage of oblique subduction. In addition, the structural evidences indicate that the coupling and mixing of different blocks occurred during the D2 phase, as a result of flow reverse and upward trajectory in the subduction channel. By contrast, the D4 phase can be interpreted as related to extension at shallow structural levels. In this framework, the exhumation-related structures in the mélange indicate that this process, probably long-lived, developed through different mechanisms, active in the subduction channel through time. Copyright © 2009 John Wiley & Sons, Ltd. [source] Duplex architecture and late-orogenic backthrusting in Foredeep Units of the Northern Apennines (Italy)GEOLOGICAL JOURNAL, Issue 4 2008Andrea Cerrina Feroni Abstract The Northern Apennines of Italy is a fold and thrust belt that resulted from the NE-ward progressive overthrusting of a Mesoalpine stacking (the ocean-derived Ligurian Units) onto the detached sedimentary cover of the Adria plate continental margin (Foredeep Units). The Futa Pass area represents a key sector for the reconstruction of the deformation history of two Foredeep Units (Acquerino and Carigiola Units). The tectonic evolution of this sector is characterized by the superposition of three main deformation stages, with a constant NNE,SSW compression direction. The oldest structure is represented by the NNE-verging Acquerino Unit duplex structure, the roof thrust of which is represented by the Ligurian stacking basal thrust. The interpretation of this structure as a large-scale duplex is supported by the presence in the outer sectors of the Northern Apennines belt of Ligurian Units directly overthrust on younger Foredeep Units. In the second deformation stage the NNE-verging Tavaiano Thrust developed. This regionally significant tectonic surface juxtaposes the Acquerino Unit (already developed as a duplex) and the overlying Ligurian Units, onto the Carigiola Unit. During this stage the fault pattern of the Carigiola Unit was also developed, characterized by two conjugate fault systems, coherent with a NNE,SSW maximum compression direction. During the last deformation stage, a backthrusting with a top-to-the SSW sense of movement (the Marcoiano Backthrust) brings the Carigiola Unit and its tectonic cover over the Acquerino and Ligurian Units, with the development of a large footwall syncline. The deformation history presented here differs from previous studies, and so provides a contribution to the debate on Northern Apennines tectonic evolution. Copyright © 2008 John Wiley & Sons, Ltd. [source] Geological evolution and structural style of the Palaeozoic Tafilalt sub-basin, eastern Anti-Atlas (Morocco, North Africa)GEOLOGICAL JOURNAL, Issue 1 2008E. A. Toto Abstract The Tafilalt is one of a number of generally unexplored sub-basins in the eastern Anti-Atlas of Morocco, all of which probably underwent a similar tectono-stratigraphic evolution during the Palaeozoic Era. Analysis of over 1000,km of 2-D seismic reflection profiles, with the interpretation of ten regional seismic sections and five isopach and isobath maps, suggests a multi-phase deformation history for the Palaeozoic-aged Tafilalt sub-basins. Extensional phases were probably initiated in the Cambrian, followed by uniform thermal subsidence up to at least the end of the Silurian. Major extension and subsidence did not begin prior to Middle/Upper Devonian times. Extensional movements on the major faults bounding the basin to the north and to the south took place in synchronisation with Upper Devonian sedimentation, which provides the thickest part of the sedimentary sequence in the basin. The onset of the compressional phase in Carboniferous times is indicated by reflectors in the Carboniferous sequence progressively onlapping onto the Upper Devonian sequence. This period of compression developed folds and faults in the Upper Palaeozoic-aged strata, producing a structural style characteristic of thin-skinned fold and thrust belts. The Late Palaeozoic units are detached over a regional décollement with a northward tectonic vergence. The folds have been formed by the process of fault-propagation folding related to the thrust imbricates that ramp up-section from the décollement. Copyright © 2007 John Wiley & Sons, Ltd. [source] Micromechanical analysis of failure propagation in frictional granular materialsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 15 2009Antoinette Tordesillas Abstract The extent to which the evolution of instabilities and failure across multiple length scales can be reproduced with the aid of a bifurcation analysis is examined. We adopt an elastoplastic micropolar constitutive model, recently developed for dense cohesionless granular materials within the framework of thermomicromechanics. The internal variables and their evolution laws are conceived from a direct consideration of the dissipative mechanism of force chain buckling. The resulting constitutive law is cast entirely in terms of the particle scale properties. It thus presents a unique opportunity to test the potential of micromechanical continuum formulations to reproduce key stages in the deformation history: the development of material instabilities and failure following an initially homogeneous deformation. Progression of failure, initiating from frictional sliding and rolling at contacts, followed by the buckling of force chains, through to macroscopic strain softening and shear banding, is reproduced. Bifurcation point, marking the onset of shear banding, occurred shortly after the peak stress ratio. A wide range of material parameters was examined to show the effect of particle scale properties on the progression of failure. Model predictions on the thickness and angle of inclination of the shear band and the structural evolution inside the band, namely the latitudinal distribution of particle rotations and the angular distributions of contacts and the normal contact forces, are consistent with observations from numerical simulations and experiments. Copyright © 2009 John Wiley & Sons, Ltd. [source] Tectono-metamorphic history of the Tacagua ophiolitic unit (Cordillera de la Costa, northern Venezuela): Insights in the evolution of the southern margin of the Caribbean PlateISLAND ARC, Issue 1 2007Alessandro Ellero Abstract The southern margin of the Caribbean Plate is well exposed in the Cordillera de la Costa of northern Venezuela, where amalgamated terranes consisting of continental and oceanic units occur. In the Cordillera de la Costa, metamorphosed oceanic units crop out along the coast near Caracas. Among them, the Tacagua unit is characterized by metaserpentinites and metabasites showing mid-oceanic ridge basalt geochemical affinity. These lithologies, representative of a disrupted ophiolite sequence, are associated with metasediments consisting of calcschists alternating with pelitic and psammitic schists, whose protoliths were probably represented by deep-sea hemipelagic and turbiditic deposits. In the Tacagua unit, a polyphase deformation history has been reconstructed, consisting of four folding phases from D1 to D4. Geological setting suggests an involvement of the Tacagua unit in the processes connected with a subduction zone. The following deformations (from D2 to D4) observed in the field might be related to the exhumation history of the Tacagua unit. The late deformation history consists of an alternation of deformation phases characterized by displacement parallel (D2 and D4 phases) and normal (D3 phase) to plate boundary between the Caribbean and South America Plates. All lines of geological evidence suggest that the whole evolution of the Tacagua unit was acquired in a setting dominated by oblique convergence, in which alternation of strike-slip and pure compressional or pure extensional tectonics occurred through time. [source] Some aspects of the mechanical response of BMI 5250-4 neat resin at 191°C: Experiment and modeling,JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008M. B. Ruggles-Wrenn Abstract The inelastic deformation behavior of BMI-5250-4 neat resin, a high-temperature polymer, was investigated at 191°C. The effects of loading rate on monotonic stress,strain behavior as well as the effect of prior stress rate on creep behavior were explored. Positive nonlinear rate sensitivity was observed in monotonic loading. Creep response was found to be significantly influenced by prior stress rate. Effect of loading history on creep was studied in stepwise creep tests, where specimens were subjected to a constant stress rate loading followed by unloading to zero stress with intermittent creep periods during both loading and unloading. The strain-time behavior was strongly influenced by prior deformation history. Negative creep was observed on the unloading path. In addition, the behavior of the material was characterized in terms of a nonlinear viscoelastic model by means of creep and recovery tests at 191°C. The model was employed to predict the response of the material under monotonic loading/unloading and multi-step load histories. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] The initiation and development of metamorphic foliation in the Otago Schist, Part 1: competitive oriented growth of white micaJOURNAL OF METAMORPHIC GEOLOGY, Issue 6 2005A. STALLARD Abstract The 3D shape, size and orientation data for white mica grains sampled along two transects of increasing metamorphic grade in the Otago Schist, New Zealand, reveal that metamorphic foliation, as defined by mica shape-preferred orientation (SPO), developed rapidly at sub-greenschist facies conditions early in the deformation history. The onset of penetrative strain metamorphism is marked by the rapid elimination of poorly oriented large clastic mica in favour of numerous new smaller grains of contrasting composition, higher aspect ratios and a strong preferred orientation. The metamorphic mica is blade shaped with long axes defining the linear aspect of the foliation and intermediate axes a partial girdle about the lineation. Once initiated, foliation progressively intensified by an increase in the aspect ratio, size and alignment of grains, although highest grade samples within the chlorite zone record a decrease in aspect ratio and reduction in SPO strength despite continued increase in grain size. These trends are interpreted in terms of progressive competitive anisotropic growth of blade-shaped grains so that the fastest growth directions and blade lengths tend to parallel the extension direction during deformation. The competitive nature of mica growth is indicated by the progressive increase in size and resultant decrease in number of metamorphic mica with increasing grade, from c. 1000 relatively small mica grains per square millimetre of thin section at lower grades, to c. 100 relatively large grains per square millimetre in higher grade samples. Reversal of SPO intensity and grain aspect ratio trends in higher grade samples may reflect a reduction in the strain rate or reduction in the deviatoric component of the stress field. [source] Garnet porphyroblast timing and behaviour during fold evolution: implications from a 3-D geometric analysis of a hand-sample scale fold in a schistJOURNAL OF METAMORPHIC GEOLOGY, Issue 9 2003N. E. Timms Abstract Detailed 3-D analysis of inclusion trails in garnet porphyroblasts and matrix foliations preserved around a hand-sample scale, tight, upright fold has revealed a complex deformation history. The fold, dominated by interlayered quartz,mica schist and quartz-rich veins, preserves a crenulation cleavage that has a synthetic bulk shear sense to that of the macroscopic fold and transects the axis in mica-rich layers. Garnet porphyroblasts with asymmetric inclusion trails occur on both limbs of the fold and display two stages of growth shown by textural discontinuities. Garnet porphyroblast cores and rims pre-date the macroscopic fold and preserve successive foliation inflection/intersection axes (FIAs), which have the same trend but opposing plunges on each limb of the fold, and trend NNE,SSW and NE,SW, respectively. The FIAs are oblique to the main fold, which plunges gently to the WSW. Inclusion trail surfaces in the cores of idioblastic porphyroblasts within mica-rich layers define an apparent fold with an axis oblique to the macroscopic fold axis by 32°, whereas equivalent surfaces in tabular garnet adjacent to quartz-rich layers define a tighter apparent fold with an axis oblique to the main fold axis by 17°. This potentially could be explained by garnet porphyroblasts that grew over a pre-existing gentle fold and did not rotate during fold formation, but is more easily explained by rotation of the porphyroblasts during folding. Tabular porphyroblasts adjacent to quartz-rich layers rotated more relative to the fold axis than those within mica-rich layers due to less effective deformation partitioning around the porphyroblasts and through quartz-rich layers. This work highlights the importance of 3-D geometry and relative timing relationships in studies of inclusion trails in porphyroblasts and microstructures in the matrix. [source] Cenozoic Exhumation and Thrusting in the Northern Qilian Shan, Northeastern Margin of the Tibetan Plateau: Constraints from Sedimentological and Apatite Fission-Track DataACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2009Zhaojie GUO Abstract: The Qilian Shan lies along the northeastern edge of the Tibetan Plateau. To constrain its deformation history, we conducted integrated research on Mesozoic,Cenozoic stratigraphic sections in the Jiuxi Basin immediately north of the mountain range. Paleocurrent measurements, sandstone compositional data, and facies analysis of Cenozoic stratigraphic sections suggest that the Jiuxi Basin received sediments from the Altyn Tagh Range in the northwest, initially in the Oligocene (,33 Ma), depositing the Huoshaogou Formation in the northern part of the basin. Later, the source area of the Jiuxi Basin changed to the Qilian Shan in the south during Late Oligocene (,27 Ma), which led to the deposition of the Baiyanghe Formation. We suggest that uplift of the northern Qilian Shan induced by thrusting began no later than the Late Oligocene. Fission-track analysis of apatite from the Qilian Shan yields further information about the deformation history of the northern Qilain Shan and the Jiuxi Basin. It shows that a period of rapid cooling, interpreted as exhumation, initiated in the Oligocene. We suggest that this exhumation marked the initial uplift of the Qilian Shan resulting from the India,Asia collision. [source] Cenozoic Stratigraphy Deformation History in the Central and Eastern of Qaidam Basin by the Balance Section Restoration and its ImplicationACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2009Dongliang LIU Abstract: The Qaidam Basin, located in the northern margin of the Qinghai,Tibet Plateau, is a large Mesozoic,Cenozoic basin, and bears huge thick Cenozoic strata. The geologic events of the Indian-Eurasian plate,plate collision since ,55 Ma have been well recorded. Based on the latest progress in high-resolution stratigraphy, a technique of balanced section was applied to six pieces of northeast-southwest geologic seismic profiles in the central and eastern of the Qaidam Basin to reconstruct the crustal shortening deformation history during the Cenozoic collision. The results show that the Qaidam Basin began to shorten deformation nearly synchronous to the early collision, manifesting as a weak compression, the deformation increased significantly during the Middle and Late Eocene, and then weakened slightly and began to accelerate rapidly since the Late Miocene, especially since the Quaternary, reflecting this powerful compressional deformation and rapid uplift of the northern Tibetan Plateau around the Qaidam Basin. [source] |