Home About us Contact | |||
Defense System (defense + system)
Kinds of Defense System Selected AbstractsChanges in antioxidant defense status in response to cisplatin and 5-FU in esophageal carcinomaDISEASES OF THE ESOPHAGUS, Issue 2 2008T. Kaur SUMMARY., The ability of reactive oxygen species to induce cellular damage and to cause cell death opens the possibility of exploiting this property in the treatment of esophageal cancer through a free radical mediated mechanism. The present study was carried out with the aim of evaluating the changes in the antioxidant defense status in esophageal cancer patients treated without and with neoadjuvant therapy (NAT). Forty surgically resected tissue specimens from tumors, tissue adjoining the tumors and paired macroscopically normal mucosa were obtained from esophageal cancer patients treated with or without chemo-radiotherapy. An evaluation of antioxidant defense system in the normal, adjoining and tumor esophageal tissues in response to NAT revealed decreased catalase activity in tumor and adjoining tissues as compared to their respective normal tissue levels. Similarly, decreased superoxide dismutase activity was observed in tumor tissue in response to NAT. In both the treatment groups (with and without NAT), no significant change was observed in the enzyme activity of glutathione reductase in the normal, adjoining and tumor tissues. Enhanced glutathione peroxidase activity was found in tumor tissue, as compared to the adjoining and paired normal tissue of patients after NAT. Estimation of reduced glutathione (GSH) levels showed a significant decline in GSH levels in esophageal tumors after NAT. Depletion of GSH, an endogenous antioxidant, would elevate drug sensitivity and might predispose neoplastic cells to apoptosis in response to NAT. The antioxidant enzymes in the esophageal carcinoma thus may play an important role in influencing the final outcome upon NAT course. [source] Malathion-induced oxidative stress in human erythrocytes and the protective effect of vitamins C and E in vitroENVIRONMENTAL TOXICOLOGY, Issue 3 2009Dilek Durak Abstract Malathion is an organophosphate (OP) pesticide that has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the cellular antioxidant defense system. We examined the effect of several different doses of malathion (25, 75, 200 ,M), or malathion in combination with vitamin C (VC; 10 ,M) or vitamin E (VE; 30 ,M), on the levels of malondialdehyde (MDA), and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities in human erythrocytes in vitro. Erythrocytes were incubated under various treatment conditions (malathion alone, vitamins alone, or malathion plus vitamin) at 37°C for 60 min, and the levels of MDA, and SOD, CAT and GPx activities, were determined. Treatment with malathion alone increased the levels of MDA and decreased SOD, CAT, and GPx activities in erythrocytes (P < 0.05). There were no statistical differences among VC-treated, VE-treated, or VC + VE-treated erythrocyes, as compared with nontreated control cells. Treatment of cells with malathion + VC, malathion + VE, or a combination of all three agents prevented malathion-induced changes in antioxidant enzyme activity and lipid peroxidation. However, this effect was seen only at low concentrations of malathion (25 and 75 ,M), and the combination of VC + VE had a more protective effect than VC or VE alone. These results indicated that the presence of vitamins at concentrations that are similar to the levels found in plasma have no effect on malathion-induced toxicity in erythrocytes at a concentration of malathion (200 ,M) that is typically used in pesticides. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2009. [source] THE PHYLOGENY OF THE PENTASCHISTIS CLADE (DANTHONIOIDEAE, POACEAE) BASED ON CHLOROPLAST DNA, AND THE EVOLUTION AND LOSS OF COMPLEX CHARACTERSEVOLUTION, Issue 4 2007C. Galley We construct a species-level phylogeny for the Pentaschistis clade based on chloroplast DNA, from the following regions: trnL-F, trnT-L, atpB-rbcL, rpL16, and trnD-psbA. The clade comprises 82 species in three genera, Pentaschistis, Pentameris, and Prionanthium. We demonstrate that Prionanthium is nested in Pentaschistis and that this clade is sister to a clade of Pentameris plus Pentaschistis tysonii. Forty-three of the species in the Pentaschistis clade have multicellular glands and we use ancestral character state reconstruction to show that they have been gained twice or possibly once, and lost several times. We suggest that the maintenance, absence, loss, and gain of glands are correlated with leaf anatomy type, and additionally that there is a difference in the degree of diversification of lineages that have these different character combinations. We propose that both glands and sclerophyllous leaves act as defense systems against herbivory, and build a cost/benefit model in which multicellular glands or sclerophyllous leaves are lost when the alternative defense system evolves. We also investigate the association between leaf anatomy type and soil nutrient type on which species grow. There is little phylogenetic constraint in soil nutrient type on members of the Pentaschistis clade, with numerous transitions between oligotrophic and eutrophic soils. However, only orthophyllous-leaved species diversify on eutrophic soils. We suggest that the presence of these glands enables the persistence of orthophyllous lineages and therefore diversification of the Pentaschistis clade on eutrophic as well as oligotrophic soils. [source] Contribution of Tyr712 and Phe716 to the activity of human RNase LFEBS JOURNAL, Issue 13 2004Masayuki Nakanishi Ribonuclease L (RNase L) is a key enzyme in the 2-5A host defense system, and its activity is strictly regulated by an unusual 2,,5,-linked oligoadenylate (2-5A). A bipartite model, in which the N-terminal half of RNase L is responsible for the 2-5A binding and the C-terminal half alone is able to hydrolyse the substrate RNA, has been proposed on the basis of the results of deletion mutant analyses [Dong, B. & Silverman, R.H. (1997) J. Biol. Chem.272, 22236,22242]. Above all, the region between Glu711 and His720 was revealed to be essential for RNA binding and/or hydrolysis. To dissect the function of the region, we performed scanning mutagenesis over the 10 residues of glutathione S -transferase (GST)-fusion RNase L. Among the single amino acid mutants examined, Y712A and F716A resulted in a significant decrease of RNase activity with a reduced RNA binding acitivity. The losses of the RNase activity were not restored by its conservative mutation, whereas the RNA binding activity was enhanced in the case of Y712F. These results indicate that both Tyr712 and Phe716 provide the enzyme with a RNA binding activity and catalytic environment. [source] Hepatoprotective activity of picroliv, curcumin and ellagic acid compared to silymarin on paracetamol induced liver toxicity in miceFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 6 2009C. Girish Abstract Oxidative stress is implicated as a common pathologic mechanism contributing to the initiation and progression of hepatic damage in a variety of liver disorders. Present study attempts to evaluate the hepatoprotective activity of picroliv, curcumin and ellagic acid in comparison to silymarin using paracetamol (PCM) induced acute liver damage. Hepatotoxicity was induced by administering a single oral dose of PCM (500 mg/kg) and was assessed by quantifying the serum enzyme activities, phenobarbitone induced sleeping time and histopathological analysis of liver tissues. The antioxidant parameters, malondialdehyde (MDA), reduced glutathione (GSH) and catalase of the liver tissue were also assessed. The herbal drugs were administered for 7 days by oral route at 50 and 100 mg/kg. PCM induced hepatic damage was manifested by a significant increase in the activities of marker enzymes (alanine transaminase, aspartate transaminase and alkaline phosphatase) in serum and MDA level in liver. There was also a significant decrease in activity of GSH and catalase levels. The histopathological examination on toxic models revealed centrizonal necrosis and fatty changes. Pretreatment of mice with picroliv, curcumin and ellagic acid reversed these altered parameters towards normal values, which were compared with silymarin. The normalization of phenobarbitone induced sleeping time suggests the restoration of liver cytochrome P450 enzymes. This study supports the use of these active phytochemicals against toxic liver injury, which may act by preventing the lipid peroxidation and augmenting the antioxidant defense system or regeneration of hepatocytes. These active phytochemicals may be developed as drugs for the treatment of liver diseases. [source] Peptide antibiotic human beta-defensin-1 and ,2 contribute to antimicrobial defense of the intrahepatic biliary treeHEPATOLOGY, Issue 4 2004Kenichi Harada Human beta-defensins (hBDs) are important antimicrobial peptides that contribute to innate immunity at mucosal surfaces. This study was undertaken to investigate the expression of hBD-1 and hBD-2 in intrahepatic biliary epithelial cells in specimens of human liver, and 4 cultured cell lines (2 consisting of biliary epithelial cells and 2 cholangiocarcinoma cells). In addition, hBD-1 and hBD-2 were assayed in specimens of bile. hBD-1 was nonspecifically expressed immunohistochemically in intrahepatic biliary epithelium and hepatocytes in all patients studied, but expression of hBD-2 was restricted to large intrahepatic bile ducts in 8 of 10 patients with extrahepatic biliary obstruction (EBO), 7 of 11 with hepatolithiasis, 1 of 6 with primary biliary cirrhosis (PBC), 1 of 5 with primary sclerosing cholangitis (PSC), 0 of 6 with chronic hepatitis C (CH-C), and 0 of 11 with normal hepatic histology. hBD-2 expression was evident in bile ducts exhibiting active inflammation. Serum C reactive protein levels correlated with biliary epithelial expression of hBD-2. Real-time PCR revealed that in all of 28 specimens of fresh liver, including specimens from patients with hepatolithiasis, PBC, PSC, CH-C and normal hepatic histology, hBD-1 messenger RNA was consistently expressed, whereas hBD-2 messenger RNA was selectively expressed in biliary epithelium of patients with hepatolithiasis. Immunobloting analysis revealed hBD-2 protein in bile in 1 of 3 patients with PSC, 1 of 3 with PBC, and each of 6 with hepatolithiasis; in contrast, hBD-1 was detectable in all bile samples examined. Four cultured biliary epithelial cell lines consistently expressed hBD-1; in contrast these cell lines did not express hBD-2 spontaneously but were induced to express hBD-2 by treatment with Eschericia coli, lipopolysaccharide, interleukin-1, or tumor necrosis factor-,. In conclusion, these findings suggest that in the intrahepatic biliary tree, hBD-2 is expressed in response to local infection and/or active inflammation, whereas hBD-1 may constitute a preexisting component of the biliary antimicrobial defense system. Supplementary material for this article can be found on the Hepatology website (http:/interscience.wley.com/jpages/0270,9139/suppmat/index.html). (Hepatology 2004;40:925-932). [source] The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+ T cells in T helper 1 immune responsesIMMUNOLOGICAL REVIEWS, Issue 1 2000Shuhji Seki Summary: The liver remains a hematopoietic organ after birth and can produce all leukocyte lineages from resident hematopoietic stem cells. Hepatocytes produce acute phase proteins and complement in bacterial infections. Liver Kupffer cells are activated by various bacterial stimuli, including bacterial lipopolysaccharide (LPS) and bacterial superantigens, and produce interleukin (IL)-12. IL-12 and other monokines (IL-18 etc.) produced by Kupffer cells activate liver natural killer (NK) cells and NK1.1 Ag+ T cells to produce interferon-g and thereby acquire cytotoxicity against tumors and microbe-infected cells. These liver leukocytes and the T helper 1 immune responses induced by them thus play a crucial role in the first line of defense against bacterial infections and hematogenous tumor metastases. However, if this defense system is inadequately activated, shock associated with multiple organ failure takes place. Activated liver NK1.1 Ag+ T cells and NK cells also cause hepatocyte injury. NK1.1 Ag+ T cells and another T-cell subset with an intermediate T-cell receptor, CD122+CD8+ T cells, can develop independently of thymic epithelial cells. Liver NK cells and NK1.1 Ag+ T cells physiologically develop in situ from their precursors, presumably due to bacterial antigens brought from the intestine via the portal vein. NK cells activated by bacterial superantigens or LPS are also probably involved in the vascular endothelial injury in Kawasaki disease. [source] Interaction of pyridostigmine and physical stress on antioxidant defense system in skeletal muscle of miceJOURNAL OF APPLIED TOXICOLOGY, Issue 4 2001R. Jagannathan Abstract Pyridostigmine bromide (PB), a reversible anticholinesterase drug, had been used against possible nerve gas exposure during the Persian Gulf War. The Gulf War veterans used PB and they were under physical stress. This study investigated the delayed and interactive effects of pyridostigmine and physical stress on the antioxidant defense system in triceps muscle of mice. Male NIH Swiss mice were divided into four groups and treated as follows: sedentary control; pyridostigmine (1.2 mg kg,1 p.o.); exercise; and PB plus exercise. Mice were exercised for 10 weeks, but PB was administered daily during the 5th and 6th weeks. Mice were sacrificed 24 h after the last treatments and the triceps muscle was isolated and analyzed. There was a significant increase in total superoxide dismutase (CuZn-SOD + Mn-SOD) activity (141% of control) with PB plus exercise, suggesting that any influx of superoxide anions was scavenged efficiently. The Mn-SOD enzyme protein levels were reduced significantly (63% of control) by PB plus exercise. Catalase enzyme protein levels were increased significantly by exercise (132% of control) as well as by PB plus exercise (139% of control). Glutathione levels were increased significantly by exercise alone (123% of control). Pyridostigmine bromide plus exercise significantly increased the malondialdehyde concentration (124% of control) in the triceps muscle, indicating an oxidative stress response of the combination. The data indicate that a combination of PB ingestion and exercise training significantly altered the antioxidant enzyme activities, enzyme protein levels and lipid peroxidation, leading to oxidative injury. Physical stress amplified the delayed effects of PB in the skeletal muscle of mice. Copyright © 2001 John Wiley & Sons, Ltd. [source] Ethanol-induced alterations of the antioxidant defense system in rat kidneyJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 6 2006Diana Dinu Abstract We report here the effects of chronic ethanol consumption on the antioxidant defense system in rat kidney. Thirty-two male Wistar rats were randomly divided in two identical groups and were treated as follows: control group (water for fluid) and the ethanol-fed group (2 g/kg body weight/24 h). The animals were sacrificed after 10 weeks, and respectively 30 weeks of ethanol consumption, and the renal tissue was isolated and analyzed. Results revealed that kidney alcohol dehydrogenase activities increased significantly after ethanol administration, but the electrophoretic pattern of alcohol dehydrogenase isoforms was unmodified. The SDS polyacrylamidegel electrophoretic study of kidney proteins has revealed the appearance of two new protein bands after long-term ethanol consumption. The kidney reduced glutathione/oxidized glutathione ratio decreased, indicating an oxidative stress response due to ethanol ingestion. The malondialdehyde contents and xanthine oxidase activities were unchanged. The antioxidant enzymatic defense system showed a different response during the two periods of ethanol administration. After 10 weeks, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase were activated, while superoxide dismutase, glutathione transferase, and ,-glutamyltranspeptidase levels were stationary. After 30 weeks, superoxide dismutase and glutathione peroxidase activities were unmodified, but catalase, glutathione transferase, ,-glutamyltranspeptidase, glutathione reductase, and glucose-6-phosphate dehydrogenase activities were significantly increased. Remarkable changes have been registered after 30 weeks of ethanol administration for glutathione reductase and glucose-6-phosphate dehydrogenase activities, including an increase by 106 and 216' of control values, respectively. These results showed specific changes in rat kidney antioxidant system and glutathione status as a consequence of long-term ethanol administration. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:386-395, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20101 [source] Tissue plasminogen activator (t-PA) and placental plasminogen activator inhibitor (PAI-2) in gingival crevicular fluid from patients with Papillon,Lefèvre syndromeJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 9 2004Christer Ullbro Abstract Objectives: Numerous patients with Papillon,Lefèvre syndrome (PLS) express a severe periodontal inflammation that results in premature loss of deciduous and permanent teeth. The plasminogen activating (PA) system is involved in physiological and pathological processes including epithelial healing, extracellular proteolysis and local inflammatory reactions. The aim of the study was to explore a possible role of the PA system in patients with PLS. Material and Methods: Samples of gingival crevicular fluid (GCF) were collected from areas with gingival infection in 20 patients with PLS and in 20 healthy controls. The concentration of tissue plasminogen activator (t-PA) and inhibitor (PAI-2) was measured with ELISA. Results: The median level of PAI-2 was significantly higher (p<0.01) in PLS patients than in the controls, while the median value of t-PA did not differ between the groups. No difference in t-PA or PAI-2 levels was found regarding age, gender or presence of active periodontal disease. Conclusion: The findings indicate an atypical activity of the PA system with a disturbed epithelial function in PLS patients, suggesting that the periodontal destruction seen in patients with PLS is secondary to a hereditary defect in the defense system. [source] Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species NetworkJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 1 2008Li-Juan Quan Abstract Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H2O2). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H2O2, play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H2O2 has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H2O2 function, generation and scavenging, gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses. [source] Poster Sessions AP13: Novel Techniques and TechnologiesJOURNAL OF NEUROCHEMISTRY, Issue 2002J. K. Yao Studies of the antioxidant defense system and the monoamine metabolic pathways are often complicated by cumbersome analytical methods, which require separate and multistep extraction and chemical reaction procedures. Thus, measurements of multiple parameters are limited in relatively small biological samples. High performance liquid chromatography (HPLC) coupled with a Coulometric Multi-Electrode Array System (CMEAS) provides us a convenient and most sensitive tool to measure low molecular weight, redox-active compounds in biological sample. The deproteinized sample was analyzed on a HPLC coupled with a 16-channel CMEAS, which incremented from 60 to 960 mV in 60 mV steps. Each sample was run on a single column (Meta-250, 4.6 × 250 mm) under a 150-minute complex gradient that ranged from 0% B (A: 1.1% pentane sulfonic acid) to 20% B (B: 0.1 m lithium acetate in mixture of methanol, acetonenitrile and isopropanol), with a flow rate of 0.5 mL/min. We have developed an automated procedure to simultaneously measure various antioxidant, oxidative stress marker, and monoamine metabolites in a single column with binary gradient. No other chemical reactions are necessary. In order to reduce the running time and yet achieve a reproducible retention time by the autosampler injection, our gradient elution profile was modified to produce a shorter equilibration time and to compensate for the initial contamination of mobile phase B following the first injection. Without the use of two columns in series and peak suppresser/gradient mixer, we have simplified the previously published method to measure over 20 different antioxidants, oxidative stress markers and monoamine metabolites simultaneously in biological samples. [source] Interactions between melatonin and nicotinamide nucleotide: NADH preservation in cells and in cell-free systems by melatoninJOURNAL OF PINEAL RESEARCH, Issue 2 2005Dun-Xian Tan Abstract:, Interactions of melatonin and nicotinamide adenine dinucleotide (NADH) have been studied in different experimental models including NADH-promoted oxyhemoglobin oxidation, vanadate-induced NADH oxidation and paraquat-induced NADH depletion in cultured PC12 cells. Our findings indicate that melatonin preserves NADH levels under oxidative stress both in cell-free systems and in cultured PC12 cells. These interactions likely involve electron donation by melatonin and reduction of the NAD radical. As a result, the NAD radical is recycled to NADH and melatonin is oxidized to N1 -acetyl- N2 -formyl-5-methoxykynuramine (AFMK). NADH is a central molecule at the crossroads between energy metabolism and the antioxidant defense system in organisms. Recycling of NADH by melatonin might improve the efficiency of NADH as an energy carrier and as an antioxidant. Interactions between melatonin and NADH may be implicated in mitochondrial metabolism. [source] The Effect of Acute Ethanol Intoxication on Salivary Proteins of Innate and Adaptive ImmunityALCOHOLISM, Issue 4 2008Napoleon Waszkiewicz Background:, Human salivary proteins: peroxidase, lysozyme, lactoferrin, and IgA, participate in the protection of oral tissues, as well as upper digestive and respiratory tracts, against a number of microbial pathogens. In the current study, we investigated the effect of acute consumption of a large dose of ethanol on representative human salivary proteins of the innate and adaptive immune systems. Methods:, Eight healthy male volunteers drank an average of 2.0 g (1.4 to 2.5 g/kg) body weight of ethanol, in the form of vodka, in the 6-hour period. Samples of resting whole saliva were collected 12 hours before, then 36 and 108 hours after, the alcohol consumption. The levels of total protein, immunoglobulin A, lysozyme and lactoferrin as well as peroxidase activity were determined in saliva. Results:, At 36 hours after alcohol consumption, salivary protein and lysozyme concentrations as well as peroxidase activity were significantly decreased (p = 0.002, p = 0.043, and p = 0.003, respectively), in comparison to the values obtained at 12 hours before drinking. Between 36 and 108 hours after alcohol consumption, the salivary protein and lysozyme concentrations, as well as peroxidase activity showed a tendency to increase, although at 108 hours after the drinking session, the concentration of protein and peroxidase activity were still significantly lower than before drinking. There was no significant change in the level of lactoferrin, after the drinking session. The salivary concentration of IgA tended to increase at 36 hours after alcohol consumption, and at 108 hours it was significantly higher (p = 0.028), when compared to IgA concentration in the saliva collected before drinking (from 8% to 26% and 32% of total protein content, respectively). Conclusion:, Our report is the first to show that acute ingestion of relatively large, yet tolerable dose of alcohol, significantly disturbs salivary antimicrobial defense system. Reduced lysozyme level and decreased peroxidase activity may contribute to increased susceptibility to infections, when acute alcohol intake coincides with exposure to pathogens. [source] Epigenetic DNA Hypermethylation of the HERP Gene Promoter Induces Down-regulation of Its mRNA Expression in Patients With Alcohol DependenceALCOHOLISM, Issue 4 2006Stefan Bleich Background: Elevated plasma homocysteine concentrations can influence genomic and gene-specific DNA methylation in peripheral blood cells. The aim of this study was to investigate in patients with alcohol dependence, who show chronically elevated homocysteine levels, whether DNA methylation pattern within the HERP (homocysteine-induced endoplasmic reticulum protein) promoter region and expression of HERP mRNA is altered. Methods: The HERP mRNA expression level was measured by quantitative PCR in the blood of 66 male alcoholic patients and 55 nondrinking healthy controls. Epigenetic genomic DNA methylation status and HERP promoter methylation were measured with a nonradioactive elongation assay. Results: We observed a significant increase (7.6%) in the HERP promoter DNA methylation in patients with alcohol dependence (t test, t=,2.45, p<0.02) when compared with healthy controls (80.4%, SD 14.5), which was significantly associated with their elevated homocysteine levels (multiple linear regression, p<0.007). Furthermore, we found a significantly lower HERP mRNA expression in patients with alcohol dependence (t test, ,7.61 ,CT; SD 1.87, p<0.001) when compared with healthy controls (,6.04 ,CT; SD 2.41). The lowered HERP mRNA expression in alcoholic patients was best explained by the hypermethylation of the regulatory HERP gene promoter (regression analysis, p=0.004). Conclusions: To our knowledge, this is the first study evaluating HERP mRNA expression and its specific gene promoter methylation in alcoholic patients. As hypermethylation of DNA is an important epigenetic factor in the down-regulation of gene expression, and as HERP has been considered to play an essential role within the intracellular defense system, these findings may be useful in the understanding and treatment of different disease conditions associated with alcohol dependence. [source] Inhibition of Alcohol-Associated Colonic Hyperregeneration by ,-Tocopherol in the RatALCOHOLISM, Issue 1 2003P. Vincon Background: Chronic alcohol consumption results in colorectal mucosal hyperregeneration, a condition associated with an increased risk for colorectal cancer. Possible mechanisms may involve the effects of acetaldehyde and/or free radicals generated during alcohol metabolism. Vitamin E is part of the antioxidative defense system, and its concentration is decreased or its metabolic utilization increased in various tissues after chronic alcohol consumption. We wondered whether ,-tocopherol supplementation may prevent ethanol-induced colorectal cell cycle behavior and whether these changes were related to alterations in protein synthesis. Methods: Five groups of male Wistar rats, each consisting of 14 animals, received liquid diets as follows: group 1, alcohol; group 2, alcohol +,-tocopherol; group 3, control (i.e., isocaloric glucose); group 4; control (i.e., isocaloric glucose) +,-tocopherol. Group 5 was fed a solid chow diet ad libitum. After 4 weeks of feeding, immunohistology was performed with anti-proliferating cell nuclear antigen (PCNA) or anti-BCL2 antibodies. Fractional (ks) and absolute (Vs) rates of protein synthesis and rates of protein synthesis relative to RNA (kRNA) and DNA (kDNA) were measured with a flooding dose of L-[4- 3H] phenylalanine with complementary analysis of protein and nucleic acid composition. Results: The PCNA index was increased significantly in the colon after ethanol administration compared with controls (ethanol, 10.3 ± 2.3 vs. control, 6.51 ± 1.6% PCNA positive cells, p < 0.05), although neither the protein, RNA, and DNA concentrations nor ks, kRNA, kDNA, and Vs were affected. This increase in PCNA index was significantly diminished by coadministration of ,-tocopherol (ethanol +, - tocopherol, 7.86 ± 1.71% PCNA positive cells, p < 0.05) without significant alterations in protein synthetic parameters. A similar result was obtained for the PCNA index in the rectal mucosa (ethanol, 14.6 ± 4.4 vs. control, 12.1 ± 4.2% PCNA positive cell), although this did not reach statistical significance. Neither ethanol nor , - tocopherol feeding had any significant effect on BCL-2 expression in the colorectal mucosa. As with the colon, protein synthetic parameters in the mucosa were not affected by alcohol feeding at 4 weeks. These effects on colonic cell turnover without corresponding changes in protein synthesis thus represent a specific localized phenomenon rather than a general increase in anabolic processes in the tissue and reaffirm the hyperregenerative properties of chronic alcohol consumption. Conclusions: Alcohol-associated hyperproliferation could be prevented, at least in part, by supplementation with ,-tocopherol. This may support the hypothesis that free radicals are involved in the pathogenesis of alcohol-associated colorectal hyperproliferation. [source] Water Barrier Ship Self Defense LethalityNAVAL ENGINEERS JOURNAL, Issue 4 2000Charles E. Higdon ABSTRACT The Naval Surface Warfare Center Dahlgren Division has investigated technology for the Office of Naval Research (ONR) that has the potential to be very effective in defending Navy platforms against high-speed, sea-skimming anti-ship cruise missiles (ASCMs). This technology uses a new kill mechanism, a wall of water, to provide a low cost, universal terminal defense system for Navy ships. The Water Barrier or wall of water is generated from the shallow detonation of multiple underwater explosive charges to protect the ship from attacking sea skimmers. This terminal defense concept can be employed to slow or stop debris and warhead fragments from missiles killed at short range to preclude significant damage to own ship. Furthermore, the Water Barrier would defeat the fuzing and structure of ASCMs that have penetrated the inner self-defense layer. This paper describes the Water Barrier Concept that provides terminal defense for Navy ships, the formation of the wall of water that defeats sea skimming ASCMs, and the field tests that demonstrate the viability of the concept. Finally, this paper documents the 1997 field test results that demonstrate the lethality of the Water Barrier against tactical battlefield missile warheads and structures. [source] Interactions between above- and belowground insect herbivores as mediated by the plant defense systemOIKOS, Issue 3 2003T. M. Bezemer Plants are frequently attacked by both above- and belowground arthropod herbivores. Nevertheless, studies rarely consider root and shoot herbivory in conjunction. Here we provide evidence that the root-feeding insect Agriotes lineatus reduces the performance of the foliage feeding insect Spodoptera exigua on cotton plants. In a bioassay, S. exigua larvae were allowed to feed on either undamaged plants, or on plants that had previously been exposed to root herbivory, foliar herbivory, or a combination of both. Previous root herbivory reduced the relative growth rates as well as the food consumption of S. exigua by more than 50% in comparison to larvae feeding on the undamaged controls. We found no effects in the opposite direction, as aboveground herbivory by S. exigua did not affect the relative growth rates of root-feeding A. lineatus. Remarkably, neither did the treatment with foliar herbivory affect the food consumption and relative growth rate of S. exigua in the bioassay. However, this treatment did result in a significant change in the distribution of S. exigua feeding. Plants that had been pre-exposed to foliar herbivory suffered significantly less damage on their young terminal leaves. While plant growth and foliar nitrogen levels were not affected by any of the treatments, we did find significant differences between treatments with respect to the level and distribution of plant defensive chemicals (terpenoids). Exposure to root herbivores resulted in an increase in terpenoid levels in both roots as well as in mature and immature foliage. Foliar damage, on the other hand, resulted in high terpenoid levels in young, terminal leaves only. Our results show that root-feeding herbivores may change the level and distribution of plant defenses aboveground. Our data suggest that the reported interactions between below- and aboveground insect herbivores are mediated by induced changes in plant secondary chemistry. [source] Capsaicin modulates pulmonary antioxidant defense system during benzo(a)pyrene-induced lung cancer in swiss albino micePHYTOTHERAPY RESEARCH, Issue 4 2008P. Anandakumar Abstract The effect of a pungent ingredient of red pepper, capsaicin, on oxidative stress induced changes in the antioxidant defense system by benzo(a)pyrene in the lungs of mice was studied. Oral gavage administration of benzo(a)pyrene (50 mg/kg body weight) to mice led to a marked increase in oxidative stress indicated by alterations in pulmonary lipid peroxidation, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione- S -transferase and glucose-6-phosphate dehydrogenase) and non-enzymic antioxidants (reduced glutathione, vitamin C, vitamin E and vitamin A). Pre-co-treatment with capsaicin (10 mg/kg body weight i.p.) restored cellular normalcy, highlighting the antioxidant potential of capsaicin in mitigating the oxidative stress mediated damage produced during benzo(a)pyrene-induced lung cancer. Copyright © 2008 John Wiley & Sons, Ltd. [source] Saliva of the graminivorous Theropithecus gelada lacks proline-rich proteins and tannin-binding capacityAMERICAN JOURNAL OF PRIMATOLOGY, Issue 8 2009Marcus Mau Abstract Gelada baboons are the sole survivors of the genus Theropithecus and the only known graminivorous primates. They developed special adaptations to their diet such as high-crowned teeth for processing hard and abrasive feed. The fine-tuning of salivary protein composition might be another key mechanism that is used by species for adapting to the environment and competing with rivals for exploiting new ecological niches. In order to test whether gelada (graminivorous) and hamadryas baboons (omnivorous) differ in their salivary protein composition, we compared whole saliva samples of captive Theropithecus gelada and Papio hamadryas using gel electrophoresis and tannin-binding assay. We hypothesized that the amount of proline-rich salivary proteins with tannin-binding capacity is higher in baboons consuming a feed with high dicot/monocot rations. Dicots produce tannins as a chemical defense system, discouraging animals from eating them. In contrast to dicots, monocots do not synthesize tannins. The presence of tannin-binding proteins in saliva should effectively inactivate the dicot tannin-based defense mechanism and increase the dietary breadth and/or the capability to switch between monocots and dicot leaves. The lack of such tannin-binding proteins in saliva would indicate a narrow dietary spectrum more restricted to monocots. We found T. gelada to completely lack proline-rich proteins (PRPs) and tannin-binding capacity similar to a great variety of other grazing mammals. In contrast, P. hamadryas does possess PRPs with tannin-binding activity. The findings support a growing body of evidence suggesting a high-level specialization of T. gelada to grass diets. However, it remains unclear, whether loss of salivary tannin-binding capacity drove the gelada into its narrow feeding niche, or whether this loss is the result of a long process of increased specialization. Thus, from an ecological point of view, T. gelada appears to be more vulnerable to environmental changes than other baboon species owing to its narrow dietary traits. Am. J. Primatol. 71:663,669, 2009. © 2009 Wiley-Liss, Inc. [source] An Antimicrobial Peptide Modulates Epithelial Responses to Bacterial ProductsTHE LARYNGOSCOPE, Issue 5 2008Marcel J. Vonk BSc Abstract Introduction: Changes in the respiratory epithelium and chronic and recurrent infections are thought to play a central role in the pathogenesis of otitis media and sinusitis. The airway epithelium is the primary defense system of the respiratory tract. Bacterial cell membrane components like lipopolysaccharide (LPS) and lipoteichoic acid (LTA) can affect the mucociliary clearance function of the respiratory epithelium. P60.4-Ac is a synthetic antimicrobial peptide based on the structure of the cathelicidin LL-37 that neutralizes the pro-inflammatory activity of LPS and LTA. Materials and Methods: Normal respiratory sinus epithelium was cultured at the air liquid interface. The cells were incubated with LPS or LTA in the presence or absence of P60.4-Ac. Results: P60.4-Ac neutralized the LPS- and LTA- induced effect on air-liquid interface cultured epithelial cells. P60.4-Ac significantly inhibited the increase in the epithelial layer caused by LPS or LTA. Conclusion: These data demonstrate that P60.4-Ac might be of clinical benefit in the management of otitis media with effusion and sinusitis. [source] Effect of supplemental l -ascorbyl-2-polyphosphate in enriched live food on the antioxidant defense system of Penaeus vannamei of different sizes exposed to ammonia-NAQUACULTURE NUTRITION, Issue 5 2006W.-N. WANG Abstract The effects of supplemental l -ascorbyl-2-polyphosphate (APP) in enriched live food (Artemia) on reactive oxygen intermediate (ROI) and free radical scavenging enzyme (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione transferase) activities in the muscle of Penaeus vannamei of two sizes exposed to ambient ammonia-N, were investigated. Significantly, decreased ROI value was found in prawns fed on enriched Artemia compared with those fed on starved Artemia (P < 0.05); the decrease was 24% and 36%, respectively. In both size classes, the antioxidant enzyme activities in prawns fed on enriched Artemia were higher than in those fed on starved Artemia (P < 0.05). The results demonstrated that the supplementation of ascorbic acid in enriched live food (Artemia) enhanced the antioxidant capacity of prawn, increasing its defense system that may fight against environmental stress, leading to impaired ammonia toxicity. [source] South Korea's Missile Defense Policy: Dilemma and Opportunity for a Medium StateASIAN POLITICS AND POLICY, Issue 3 2009Tae-Hyung Kim Proliferation of weapons of mass destruction (WMD) delivery systems has made missile defense a key security challenge, but missile defense systems are highly controversial. I closely examine the development of the missile defense system in South Korea. South Korea has steadfastly remained outside the theater missile defense (TMD) structure, but it cooperates on missile defense, in a limited way, with its U.S. ally. South Korea's refusal to participate in TMD even as it quietly acquires air defense systems can be explained by political and diplomatic considerations regarding its neighbors (especially China), military and economic considerations about missile defense, and strategic considerations for the United States-South Korea alliance. The TMD situation demonstrates South Korea's dilemma and opportunity as a medium power in a particularly harsh security environment. South Korea is walking a fine line to diversify security relations, to maintain the alliance structure with the United States (albeit in a changed form), and to build a self-reliant military capability. [source] Anticipation of Acute Stress in Isoprenaline-Sensitive and , Resistant Rats: Strain and Gender DifferencesBASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2000Anna Yamamotová The effect of stress anticipation was studied in two inbred Wistar rat strains with high and low sensitivity to isoprenaline. The animals were exposed to tail-flick and 4-hr water immersion restraint stress on two consecutive days. On the first day stress was applied to one group and the next day to the anticipation group. The changes in adrenal, heart and spleen weights, tail-flick latency, incidence of gastric ulcers, and the antioxidant defense system in the sensorimotor cortex were compared with two non-stressed control groups. Anticipatory stress decreased adrenal weights. The content of thiobarbituric acid reactive substances (TBARS) was increased both in acute and anticipatory stress; superoxide dismutase, glutathione peroxidase, and antioxidative capacity were increased in anticipatory stress only. Stress anticipation decreased the pain threshold in the isoprenaline-sensitive and increased in the isoprenaline-resistant rats and led to more frequent gastric ulcers in the isoprenaline-resistant group. Significant sex differences were observed both in adrenal weights and TBARS content. The relative adrenal weights were negatively correlated with the TBARS content. We suggest that the outcome of anticipatory stress may depend upon the relation between the hormonal and antioxidant functions of the adrenals and that anticipation-induced activation of antioxidant enzymes may ameliorate the acute stress response. Anticipation itself was found to be a stronger stressor than physical acute stress. [source] Microcystin extracts induce ultrastructural damage and biochemical disturbance in male rabbit testisENVIRONMENTAL TOXICOLOGY, Issue 1 2010Ying Liu Abstract In the present research, the changes of ultrastructures and biochemical index in rabbit testis were examined after i.p. injection with 12.5 ,g/kg microcystin (MC) extracts. Ultrastructural observation showed widened intercellular junction, distention of mitochondria, endoplasmic reticulum, and Golgi apparatus. All these changes appeared at 1, 3, and 12 h, but recovered finally. In biochemical analyses, the levels of lipid peroxidation (MDA) and H2O2 increased significantly at 1 h, indicating MC-caused oxidative stress. Finally, H2O2 decreased to the normal levels, while MDA remained at high levels. The antioxidative enzymes (CAT, SOD, GPx, GST) and antioxidants (GSH) also increased rapidly at 1 h, demonstrating a quick response of the defense systems to the oxidative stress. Finally, the activity of CAT, SOD, and GPX recovered to the normal level, while the activity of GST and the concentration of GSH remained at a high level. This suggests that the importance of MCs detoxification by GST via GSH, and the testis of rabbit contained abundant GSH. The final recovery of ultrastructure and some biochemical indexes indicates that the defense systems finally succeeded in protecting the testis against oxidative damage. In conclusion, these results indicate that the MCs are toxic to the male rabbit reproductive system and the mechanism underlying this toxicity might to be the oxidative stress caused by MCs. Although the negative effects of MCs can be overcome by the antioxidant system of testis in this study, the potential reproductive risks of MCs should not be neglected because of their wide occurrence. © 2009 Wiley Periodicals, Inc. Environ Toxicol 2010. [source] Potential multidrug resistance gene POHL: An ecologically relevant indicator in marine spongesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2001Anatoli Krasko Abstract Sponges are sessile filter feeders found in all aquatic habitats from the tropics to the arctic. Against potential environmental hazards, they are provided with efficient defense systems, e.g., protecting chaperones and/or the P-170/multidrug resistance pump system. Here we report on a further multidrug resistance pathway that is related to the pad one homologue (POH1) mechanism recently identified in humans. It is suggested that proteolysis is involved in the inactivation of xenobiotics by the POH1 system. Two cDNAs were cloned, one from the demosponge Geodia cydoniumand a second from the hexactinellid sponge Aphrocallistes vastus. The cDNA from G. cydonium, termed GCPOHL, encodes a deduced polypeptide with a size of 34,591 Da and that from A. vastus, AVPOHL, a protein of a calculated Mr of 34,282. The two sponge cDNAs are highly similar to each other as well as to the known sequences from fungi (Schizosaccharomyces pombe and Saccharomyces cerevisiae) and other Metazoa (from Schistosoma mansoni to humans). Under controlled laboratory conditions, the expression of the potential multidrug resistance gene POHL is, in G. cydonium, strongly upregulated in response to the toxins staurosporin (20 ,M) or taxol (50 ,M); the first detectable transcripts appear after 1 d and reach a maximum after 3 to 5 d of incubation. The relevance of the expression pattern of the G. cydonium gene POHL for the assessment of pollution in the field was determined at differently polluted sites in the area around Rovinj (Croatia; Mediterranean Sea, Adriatic Sea). The load of the selected sites was assessed by measuring the potency of XAD-7 concentrates of water samples taken from those places to induce the level of benzo[a]pyrene monooxygenase (BaPMO) in fish and to impair the multidrug resistance (MDR)/P-170 extrusion pump in clams. These field experiments revealed that the levels of inducible BaPMO activity in fish and of the MDR potential by the water concentrates are highly correlated with the level of expression of the potential multidrug resistance gene POHL in G. cydonium. This report demonstrates that the detoxification POH pathway, here mediated by the G. cydonium GCPOHL gene, is an additional marker for the assessment of the environmental load in a given marine area. [source] THE PHYLOGENY OF THE PENTASCHISTIS CLADE (DANTHONIOIDEAE, POACEAE) BASED ON CHLOROPLAST DNA, AND THE EVOLUTION AND LOSS OF COMPLEX CHARACTERSEVOLUTION, Issue 4 2007C. Galley We construct a species-level phylogeny for the Pentaschistis clade based on chloroplast DNA, from the following regions: trnL-F, trnT-L, atpB-rbcL, rpL16, and trnD-psbA. The clade comprises 82 species in three genera, Pentaschistis, Pentameris, and Prionanthium. We demonstrate that Prionanthium is nested in Pentaschistis and that this clade is sister to a clade of Pentameris plus Pentaschistis tysonii. Forty-three of the species in the Pentaschistis clade have multicellular glands and we use ancestral character state reconstruction to show that they have been gained twice or possibly once, and lost several times. We suggest that the maintenance, absence, loss, and gain of glands are correlated with leaf anatomy type, and additionally that there is a difference in the degree of diversification of lineages that have these different character combinations. We propose that both glands and sclerophyllous leaves act as defense systems against herbivory, and build a cost/benefit model in which multicellular glands or sclerophyllous leaves are lost when the alternative defense system evolves. We also investigate the association between leaf anatomy type and soil nutrient type on which species grow. There is little phylogenetic constraint in soil nutrient type on members of the Pentaschistis clade, with numerous transitions between oligotrophic and eutrophic soils. However, only orthophyllous-leaved species diversify on eutrophic soils. We suggest that the presence of these glands enables the persistence of orthophyllous lineages and therefore diversification of the Pentaschistis clade on eutrophic as well as oligotrophic soils. [source] Invertebrate immune systems , not homogeneous, not simple, not well understoodIMMUNOLOGICAL REVIEWS, Issue 1 2004Eric S Loker Summary:, The approximate 30 extant invertebrate phyla have diversified along separate evolutionary trajectories for hundreds of millions of years. Although recent work understandably has emphasized the commonalities of innate defenses, there is also ample evidence, as from completed genome studies, to suggest that even members of the same invertebrate order have taken significantly different approaches to internal defense. These data suggest that novel immune capabilities will be found among the different phyla. Many invertebrates have intimate associations with symbionts that may play more of a role in internal defense than generally appreciated. Some invertebrates that are either long lived or have colonial body plans may diversify components of their defense systems via somatic mutation. Somatic diversification following pathogen exposure, as seen in plants, has been investigated little in invertebrates. Recent molecular studies of sponges, cnidarians, shrimp, mollusks, sea urchins, tunicates, and lancelets have found surprisingly diversified immune molecules, and a model is presented that supports the adaptive value of diversified non-self recognition molecules in invertebrates. Interactions between invertebrates and viruses also remain poorly understood. As we are in the midst of alarming losses of coral reefs, increased pathogen challenge to invertebrate aquaculture, and rampant invertebrate-transmitted parasites of humans and domestic animals, we need a better understanding of invertebrate immunology. [source] Unraveling the Role of Mitochondria During Oxidative Stress in PlantsIUBMB LIFE, Issue 4 2001Harvey Millar Abstract The sedentary habit of plants means that they must stand and fight environmental stresses that their mobile animal cousins can avoid. A range of these abiotic stresses initiate the production in plant cells of reactive oxygen and nitrogen species that ultimately lead to oxidative damage affecting the yield and quality of plant products. A complex network of enzyme systems, producing and quenching these reactive species operate in different organelles. It is the integration of these compartmented defense systems that coordinates an effective response to the various stresses. Future attempts to improve plant growth or yield must consider the complexity of inter-organelle signaling and protein targeting if they are to be successful in producing plants with resistance to a broad range of stresses. Here we highlight the role of pre-oxidant, anti-oxidant, and post-oxidant defense systems in plant mitochondria and the potential role of proteins targeted to both mitochondria and chloroplasts, in an integrated defense against oxidative damage in plants. [source] Influence of subacute treatment of some plant growth regulators on serum marker enzymes and erythrocyte and tissue antioxidant defense and lipid peroxidation in ratsJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2006Ismail Celik Abstract This study aims to investigate the effects of the plant growth regulators (PGRs) (2,3,5-triiodobenzoic acid (TIBA), Naphthaleneacetic acid (NAA), and 2,4-dichlorofenoxyacetic acid (2,4-D)) on serum marker enzymes (aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH)), antioxidant defense systems (reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST), and catalase (CAT)), and lipid peroxidation content (malondialdehyde = MDA) in various tissues of rats. 50 and 100 ppm of PGRs as drinking water were administered orally to rats (Sprague,Dawley albino) ad libitum for 25 days continuously. The PGRs treatment caused different effects on the serum marker enzymes, antioxidant defense systems, and the MDA content in experimented rats compared to controls. Results showed that TIBA caused a significant decrease in serum AST activity with both the dosage whereas serum CPK was significantly increased with 100 ppm dosage of TIBA. Meanwhile, serum AST, CPK, and LDH activities were significantly increased with both dosage of NAA and 2,4-D. The lipid peroxidation end-product MDA significantly increased in the all tissues treated with both dosages of PGRs without any change in the brain and erythrocyte of rats treated with both the dosages of 2,4-D. The GSH depletion in the kidney and brain tissues of rats treated with both dosages of PGRs was found to be significant. Furthermore, the GSH depletion in the erythrocyte of rats treated with both dosages of PGRs except 50 ppm dosage of 2,4-D was significant too. Also, the GSH level in the liver was significantly depleted with 50 ppm of 2,4-D and NAA, whereas the GSH depletion in the same tissue did not significantly change with the treatment. The activity of antioxidant enzymes was also seriously affected by PGRs; SOD significantly decreased in the liver, heart, kidney, and brain of rats treated with both dosages of NAA, whereas the SOD activity in the erythrocytes, liver, and heart was either significantly decreased or not changed with two doses of 2,4-D and TIBA. Although the CAT activity significantly increased in the erythrocyte and brain of rats treated with both doses of PGRs, it was not changed in the liver, heart, and kidney. Meanwhile, the ancillary enzyme GR activity significantly increased in the brain, heart, and liver but decreased in the erythrocyte and kidney of rats treated with both doses of PGRs. The drug-metabolizing enzyme GST activity significantly increased in the heart and kidney but decreased in the brain and erythrocytes of rats treated with both dosages of PGRs. As a conclusion, the results indicate that PGRs might affect antioxidant potential enzymes, the activity of hepatic damage enzymes, and lipid peroxidation dose independently. Also, the rats resisted to oxidative stress via antioxidant mechanism but the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. These data, along with the determined changes, suggest that PGRs produced substantial systemic organ toxicity in the erythrocyte, liver, brain, heart, and kidney during the period of a 25-day subacute exposure. © 2006 Wiley Periodicals, Inc. J Biochem Mol Toxicol 20:174,182, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20134 [source] |