Home About us Contact | |||
Decreased Proliferation (decreased + proliferation)
Selected Abstracts1,,25-Dihydroxyvitamin D3 and its analogues, EB1089 and CB1093, profoundly inhibit the in vitro proliferation of the human hepatoblastoma cell line HepG2ANZ JOURNAL OF SURGERY, Issue 7 2001J. Akhter Background: 1,,25-dihydroxyvitamin D3 (1,25[OH]2D3) has been shown to inhibit the proliferation of various cancer cells including colon, prostate, melanoma, osteosarcoma and breast cancer. Methods: The human hepatoma cell line (HepG2) was cultured with 1,25(OH)2D3 or one of two analogues EB1089 or CB1093 for various durations. Cellular proliferation was measured by uptake of [3H]thymidine, and cell numbers were determined by trypan blue exclusion counting. Results: 1,25(OH)2D3, EB1089 and CB1093 all inhibited proliferation of HepG2 by up to 90% after 5 days of treatment, compared to the untreated controls. Decreased proliferation was associated with an approximately 50% reduction in cell numbers at concentrations of up to 10,10 mol/L after 5 days of treatment with 1,25(OH)2D3. Cell proliferation rapidly recovered in cultures treated with lower concentrations of 1,25(OH)2D3 (10,10 and 10,11 mol/L) when 1,25(OH)2D3 was removed from the cultures by placing cells in serum containing medium without 1,25(OH)2D3. When HepG2 cells were treated with 10,8 mol/L 1,25(OH)2D3 for 5 weeks, there was still significant inhibition of proliferation, although at week 5 there was 66% inhibition compared to 93% at the end of week 1. Conclusions: 1,25(OH)2D3, EB1089 and CB1093 all significantly inhibit the proliferation of HepG2 hepatoblastoma cells, with EB1089 being the most potent at lower concentrations. Inhibition can be maintained for at least 4 weeks, but is reversed after removal of vitamin D3. [source] Retinoic acid induces CDK inhibitors and growth arrest specific (Gas) genes in neural crest cellsDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2005Linping Wang Retinoic acid (RA), the active metabolite of vitamin A, regulates cellular growth and differentiation during embryonic development. In excess, this vitamin is also highly teratogenic to animals and humans. The neural crest is particularly sensitive to RA, and high levels adversely affect migration, proliferation and cell death. We investigated potential gene targets of RA associated with neural crest proliferation by determining RA-mediated changes in gene expression over time, using microarrays. Statistical analysis of the top ranked RA-regulated genes identified modest changes in multiple genes previously associated with cell cycle control and proliferation including the cyclin-dependent kinase inhibitors Cdkn1a (p21), Cdkn2b (p15INK4b), and Gas3/PMP22. The expression of p21 and p15INK4b contribute to decreased proliferation by blocking cell cycle progression at G1-S. This checkpoint is pivotal to decisions regulating proliferation, apoptosis, or differentiation. We have also confirmed the overexpression of Gas3/PMP22 in RA-treated neural crests, which is associated with cytoskeletal changes and increased apoptosis. Our results suggest that increases in multiple components of diverse regulatory pathways have an overall cumulative effect on cellular decisions. This heterogeneity contributes to the pleiotropic effects of RA, specifically those affecting proliferation and cell death. [source] Contractile activity of skeletal musculature involved in breathing is essential for normal lung cell differentiation, as revealed in Myf5,/,:MyoD,/, embryosDEVELOPMENTAL DYNAMICS, Issue 3 2005Mohammad Reza Inanlou Abstract In the current study, the role of contractile activity of respiratory muscles in fetal lung growth and cell differentiation was examined using Myf5,/,:MyoD,/, mouse embryos. As previously found, Myf5,/,:MyoD,/, mouse embryos had no respiratory musculature. Consequently, they suffered from pulmonary hypoplasia and died shortly after birth. The hypoplastic lung had decreased proliferation and increased apoptotic index as early as embryonic day 14.5. By contrast, only at the last gestational day, the number of lung cells expressing platelet derived growth factor B and insulin growth factor I was decreased, while the gradient of the thyroid transcription factor 1 was not maintained. Type II pneumocytes had a failure in glycogen utilization and surfactant storage and secretion but were able to synthesize the surfactant-associated proteins. Type I pneumocytes were readily detectable using an early differentiation marker (i.e., Gp38). However, the late differentiation of type I pneumocytes never occurred, as revealed by transmission electron microscopy. Together, our findings suggest that pulmonary distension due to fetal breathing-like movements plays an important role not only in lung growth but also in lung cell differentiation. Developmental Dynamics 233:772,782, 2005. © 2005 Wiley-Liss, Inc. [source] Interleukin-4 downregulates CD127 expression and activity on human thymocytes and mature CD8+ T cellsEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2010Angela M. Crawley Abstract Signaling via the IL-7 receptor complex (IL-7R,/CD127 and IL-2R,/CD132) is required for T-cell development and survival. Decreased CD127 expression has been associated with persistent viral infections (e.g. HIV, HCV) and cancer. Many IL-2R,-sharing (,C) cytokines decrease CD127 expression on CD4+ and CD8+ T cells in mice (IL-2, IL-4, IL-7, IL-15) and in humans (IL-2, IL-7), suggesting a common function. IL-4 is of particular interest as it is upregulated in HIV infection and in thyroid and colon cancers. The role of IL-4 in regulating CD127 expression and IL-7 activity in human thymocytes and mature CD8+ T cells is unknown and was therefore investigated. IL-4 decreased CD127 expression on all thymocyte subsets tested and only on naļve (CD45RA+) CD8+ T cells, without altering membrane-bound CD127 mRNA expression. Pre-treatment of thymocytes or CD8+ T cells with IL-4 inhibited IL-7-mediated phosphorylation of STAT5 and decreased proliferation of CD8+ T cells. By downregulating CD127 expression and signaling on developing thymocytes and CD8+ T cells, IL-4 is a potential contributor to impaired CD8+ T-cell function in some anti-viral and anti-tumor responses. These findings are of particular consequence to diseases such as HIV, HCV, RSV, measles and cancer, in which CD127 expression is decreased, IL-7 activity is impaired and IL-4 concentrations are elevated. [source] Role of the Rap1 GTPase in astrocyte growth regulationGLIA, Issue 3 2003Anthony J. Apicelli Abstract Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome in which affected individuals develop nervous system abnormalities that might reflect astrocyte dysfunction. The TSC2 gene product, tuberin, encodes a GTPase-activating protein (GAP) domain, which regulates the activity of Rap1 in vitro. To determine whether dysregulated Rap1, resulting from TSC2 inactivation, leads to increased astrocyte proliferation in vivo, we generated transgenic mice expressing activated Rap1G12V specifically in astrocytes. We observed no statistically significant difference in the number of astrocytes between wild-type and GFAP-Rap1G12V littermates in vivo; however, during log-phase growth, we observed a 25% increase in GFAP-Rap1G12V astrocyte doubling times compared to wild-type controls. This decreased proliferation was associated with delayed MAP kinase, but not AKT, activation. Lastly, to determine whether constitutive Rap1 activation could reverse the increased astrocyte proliferation observed in transgenic mice expressing oncogenic RasG12V, we generated transgenic mice expressing both RasG12V and Rap1G12V in astrocytes. These double transgenic mice showed a striking reversion of the RasG12V astrocyte growth phenotype. Collectively, these results argue that the tumor suppressor properties of tuberin are unlikely to be related to Rap1 inactivation and that Rap1 inhibits mitogenic Ras pathway signaling in astrocytes. GLIA 42:225,234, 2003. © 2003 Wiley-Liss, Inc. [source] Chemoresistant tumor cell lines display altered epidermal growth factor receptor and HER3 signaling and enhanced sensitivity to gefitinibINTERNATIONAL JOURNAL OF CANCER, Issue 12 2008Tiziana Servidei Abstract Deregulated signaling through the epidermal growth factor receptor (EGFR) is involved in chemoresistance. To identify the molecular determinants of sensitivity to the EGFR inhibitor gefitinib (Iressa, ZD1839) in chemoresistance, we compared the response of matched chemosensitive and chemoresistant glioma and ovarian cancer cell lines. We found that chemoresistant cell lines were 2- to 3-fold more sensitive to gefitinib growth-inhibitory effects, because of decreased proliferation rather than survival. Sensitivity to gefitinib correlated with overexpression and constitutive phosphorylation of HER2 and HER3, but not EGFR, altered HER ligand expression, and enhanced activation of EGF-triggered EGFR pathway. No activating mutations were found in EGFR. Gefitinib fully inhibited EGF-induced and constitutive Akt activation only in chemoresistant cells. In parallel, gefitinib downregulated constitutively phosphorylated HER2 and HER3, and activated GSK3, with a concomitant degradation of cyclin D1. Ectopically overexpressed HER2 on its own was insufficient to sensitize chemonaive cells to gefitinib. pHER3 coimmunoprecipitated with p85-PI3K in chemoresistant cells and gefitinib dissociated these complexes. siRNA-mediated inhibition of HER3 decreased constitutive activation of Akt and sensitivity to gefitinib in chemoresistant cells. Our study indicates that in chemoresistant cells gefitinib inhibits both an enhanced EGF-triggered pathway and a constitutive HER3-mediated Akt activation, indicating that inhibition of HER3 together with that of EGFR could be relevant in chemorefractory tumors. Furthermore, in combination experiments gefitinib enhanced the effects of coadministered drugs more in chemoresistant than chemosensitive ovarian cancer cells. Combined treatment might be therapeutically beneficial in chemoresistant tumors from ovary and likely from other tissues. © 2008 Wiley-Liss, Inc. [source] Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetismJOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2009Noritaka Nakamichi Abstract We have previously shown significant potentiation of Ca2+ influx mediated by N-methyl- D -aspartate receptors, along with decreased microtubules-associated protein-2 (MAP2) expression, in hippocampal neurons cultured under static magnetism without cell death. In this study, we investigated the effects of static magnetism on the functionality of neural progenitor cells endowed to proliferate for self-replication and differentiate into neuronal, astroglial, and oligodendroglial lineages. Neural progenitor cells were isolated from embryonic rat neocortex and hippocampus, followed by culture under static magnetism at 100 mT and subsequent determination of the number of cells immunoreactive for a marker protein of particular progeny lineages. Static magnetism not only significantly decreased proliferation of neural progenitor cells without affecting cell viability, but also promoted differentiation into cells immunoreactive for MAP2 with a concomitant decrease in that for an astroglial marker, irrespective of the presence of differentiation inducers. In neural progenitors cultured under static magnetism, a significant increase was seen in mRNA expression of several activator-type proneural genes, such as Mash1, Math1, and Math3, together with decreased mRNA expression of the repressor type Hes5. These results suggest that sustained static magnetism could suppress proliferation for self-renewal and facilitate differentiation into neurons through promoted expression of activator-type proneural genes by progenitor cells in fetal rat brain. © 2009 Wiley-Liss, Inc. [source] Kainic acid triggers oligodendrocyte precursor cell proliferation and neuronal differentiation from striatal neural stem cellsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2007Carolina Redondo Abstract Glutamate is an excitatory amino acid that serves important functions in mammalian brain development through ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/ kainate receptor stimulation. Neural stem cells with self-renewal and multilineage potential are a useful tool to study the signals involved in the regulation of brain development. We have investigated the role played by AMPA/kainate receptors during the differentiation of neural stem cells derived from fetal rat striatum. The application of 1 and 10 ,M kainic acid increased significantly the phosphorylation of the cyclic AMP response element binding protein (CREB), raised bromodeoxyuridine incorporation in O4-positive oligodendrocyte precursors, and increased the number of O1-positive cells in the cultures. Increased CREB phosphorylation and proliferation were prevented by the AMPA receptor antagonist 4-4(4-aminophenyl)-1,2-dihydro-1-methyl-2-propylcarbamoyl-6,7-methylenedioxyphthalazine (SYM 2206) and by protein kinase A and protein kinase C inhibitors. Cultures treated with 100 ,M kainic acid showed decreased proliferation, a lower proportion of O1-positive cells, and apoptosis of O4-positive cells. None of these effects were prevented by SYM 2206, suggesting that kainate receptors take part in these events. We conclude that AMPA receptor stimulation by kainic acid promotes the proliferation of oligodendrocyte precursors derived from neural stem cells through a mechanism that requires the activation of CREB by protein kinase A and C. In the neurons derived from these cells, either AMPA or kainate receptor stimulation produces neuritic growth and larger cell bodies. © 2007 Wiley-Liss, Inc. [source] Retinal Endothelial Angiogenic Activity: Effects of Hypoxia and Glial (Müller) CellsMICROCIRCULATION, Issue 7 2004YOUSEF YAFAI ABSTRACT Objective: To explore the impact of retinal glial (Müller) cells on survival and neovascularization-related activities of cultured retinal endothelial cells under normoxic and hypoxic conditions. Methods: Bovine retinal endothelial cells (BRECs) were cultured under normoxia or hypoxia (0.5% O2) either alone, together with the human Müller cell line MIO-M1, or in normoxia- or hypoxia-conditioned media of MIO-M1 cells. Cell number, proliferation, apoptotic cell death, and migration of BRECs were determined. Results: Exposure of BRECs to hypoxia for 24 h decreased the number of adherent cells and the proliferation rate, but increased apoptosis and cell migration. Increased apoptosis and decreased proliferation of the BRECs occurred also in the presence of conditioned media of MIO-M1 cells. Under normoxic conditions, co-culture with MIO-M1 cells resulted in increased proliferation, but decreased apoptosis and migration rates of BRECs. Under hypoxic conditions, the Müller cells released elevated amounts of VEGF but their presence decreased proliferation, apoptosis and the migration rates of BRECs. Conclusions: Hypoxia inhibits the proliferation of retinal endothelial cells. Müller cells release soluble mediators that enhance this hypoxia-mediated effect but, under certain conditions (i.e., in co-culture), may protect retinal endothelial cells from apoptosis, thus supporting their survival. Altogether the findings indicate that the key signal necessary to trigger retinal endothelial proliferation under hypoxia remains to be determined. [source] Relationship between post-traumatic stress disorder-like behavior and reduction of hippocampal 5-bromo-2,-deoxyuridine-positive cells after inescapable shock in ratsPSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 6 2008Akihito Kikuchi md Aim:, Inescapable shocks (IS) have been reported to reduce the number of 5-bromo-2,-deoxyuridine (BrdU)-positive cells in hippocampus. Antidepressants prevent this reduction, and the role of neurogenesis in depression is now suggested. It has been reported, however, that the number of BrdU-positive cells was not different between the rats that developed learned helplessness and those that did not. This suggests that reduction of neurogenesis does not constitute a primary etiology of depression. It has been previously shown that IS can cause various post-traumatic stress disorder (PTSD)-like behavioral changes in rats. The aim of the present was therefore to examined whether the reduction of BrdU-positive cells relates to any PTSD-like behavioral changes in this paradigm. Methods:, Rats were given either inescapable foot-shocks (IS) or not shocked (non-S) treatment in a shuttle box on day 1 and received BrdU injections once daily during the first week after IS/non-S treatment. On day 14, rats treated with IS and non-S were given an avoidance/escape test in the shuttle box and dorsal hippocampal SGZ were analyzed by BrdU immunohistochemistry. Results:, In accordance with previously reported results, IS loading resulted in fewer BrdU-positive cells in the hippocampal subgranular zone (SGZ). Furthermore, in the IS-treated group, the number of BrdU-positive cells in the hippocampal SGZ was negatively correlated at a significant level with several hyperactive behavioral parameters but not with hypoactive behavioral parameters. Earlier findings had indicated that chronic selective serotonin re-uptake inhibitor administration, which is known to increase hippocampal neurogenesis, restored the increase in hypervigilant/hyperarousal behavior but did not attenuate the increase in numbing/avoidance behavior. Conclusion:, The regulatory mechanism responsible for the decreased proliferation and survival of cells in the hippocampus may be related to the pathogenic processes of hypervigilance/hyperarousal behaviors. [source] Transcriptional upregulation and unmethylation of the promoter region of p16 in invasive basal cell carcinoma cells and partial co-localization with the ,2 chain of laminin-332,THE JOURNAL OF PATHOLOGY, Issue 1 2007S Svensson Månsson Abstract Basal cell carcinoma cells show low proliferation rates at the invasive front and a concordant upregulation of the cdk-inhibitor p16, limiting proliferative capacity. Little is known about the mechanisms of p16 regulation in normal and malignant cells apart from that many transcription factors such as Ets1, Ets2, SP1, SP3, JunB and the polycomb protein Bmi1 have the potential to induce or repress p16 expression. Therefore, the aim of this study was to determine how p16 is regulated in basal cell carcinoma with special focus on its upregulation in invasive cells. By analysing various microdissected areas of basal cell carcinoma using real-time quantitative PCR we observed upregulation of p16 mRNA in invasive tumour cells compared to centrally localized tumour cells. The methylation status of the p16 promoter, analysed by methylation-specific PCR, also showed diminished methylation in tumour cells at the invasive front, supporting the hypothesis that promoter methylation can affect the transcriptional activation of p16 in vivo. There was only sporadic co-localization of Ets, or ERK1/2 phosphorylation with p16 upregulation at the invasive front, suggesting that these factors were not directly involved in the regulation of p16. Furthermore, the ,2 chain of laminin-332 has been reported to be increased at the invasive front compared to the central areas of many tumours. Interestingly, in basal cell carcinoma we observed partial co-localization between p16 and the ,2 chain of laminin-332 in tumour cells towards areas of ulceration and in the majority of clearly infiltrative tumour cells but not in p16 positive tumour cells with a more pushing invasive growth pattern. These data suggest that concurrent p16 upregulation and decreased proliferation are more general phenomena in different types of invasive growth patterns in basal cell carcinomas and that these only partially overlap with the ,2 chain of laminin-332 associated invasion patterns. Copyright © 2007 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] Downmodulation of Bcl-2 sensitizes metastatic LNCaP-LN3 cells to undergo apoptosis via the intrinsic pathwayTHE PROSTATE, Issue 6 2010Renduo Song Abstract BACKGROUND We explored the mechanisms of apoptosis after Bcl-2 protein downmodulation in metastatic LNCaP-LN3 cells (LN3). METHODS LNCaP, LNCaP-Pro5 (Pro5) and LN3 cells were cultured in 5% charcoal-stripped serum (CSS) or in R1881 (synthetic androgen) and bicalutamide (synthetic anti-androgen) and growth inhibition was assessed. Expression levels of androgen receptor (AR) and Bcl-2 were determined. LN3 cells were transfected with small interfering RNA Bcl-2 (siRNA Bcl-2) or control siRNA oligonucleotides. Rates of apoptosis and proliferation were obtained. Cytochrome c localization in treated and control cells was assessed,±,cyclosporine A (CsA). Caspases 9, 3, and poly (ADP-ribose) polymerase cleavage (PARP) were measured upon downmodulation of Bcl-2; and cell growth inhibition in vitro after Bcl-2 modulation combined with docetaxel chemotherapy was determined. RESULTS LN3 cells maintained growth under castrate conditions in vitro. AR protein amplification did not explain castrate-resistant LN3 cell growth. Bcl-2 protein levels in LN3 cells were significantly higher than in Pro5 cells, and were effectively downmodulated by siRNA Bcl-2. Subsequently increased apoptosis and decreased proliferation mediated by cytochrome c was noted and this was reversed by CsA. siRNA Bcl-2-transfected LN3 cells exhibited elevated levels of caspases 9, 3, and PARP cleavage. Exposure of LN3 cells to docetaxel led to increased apoptosis, and simultaneous downmodulation of Bcl-2 substantially enhanced this effect. CONCLUSIONS Downmodulation of Bcl-2 in metastatic castrate-resistant LNCaP-LN3 cells led to apoptosis via a cytochrome c -dependent pathway that was enhanced with docetaxel treatment. Prostate 70: 571,583, 2010. © 2009 Wiley-Liss, Inc. [source] Adeno-associated virus type 5,mediated intraarticular administration of tumor necrosis factor small interfering RNA improves collagen-induced arthritisARTHRITIS & RHEUMATISM, Issue 3 2010Maroun Khoury Objective RNA interference (RNAi) is a powerful tool for sequence-specific gene silencing, and interest in its application in human diseases is growing. Given the success of recent strategies for administering gene therapy in rheumatoid arthritis using recombinant vectors such as adeno-associated virus type 5 (rAAV5) for optimized intraarticular gene transfer, we undertook the present study to determine the feasibility of using rAAV5-mediated RNAi-based therapy in arthritis. Methods We developed rAAV5 vectors expressing short hairpin small interfering RNA (shRNA) against tumor necrosis factor , (TNF,) under H1 promoter, and carrying the enhanced green fluorescent protein (eGFP) reporter gene under cytomegalovirus promoter (rAAV5-shTNF). TNF, gene silencing was validated in vitro with mouse macrophages. Mice with collagen-induced arthritis were injected in the ankle and knee joints, at disease onset, with either rAAV5-shTNF or control rAAV5-eGFP vectors (5 × 109 particles). Arthritis severity was assessed clinically and histologically, and immunologic response was examined. Local and systemic transgene expression was monitored using quantitative reverse transcriptase,polymerase chain reaction, immunohistochemical analysis, and enzyme-linked immunosorbent assay. Results After a single injection of rAAV5-shTNF into inflamed joints, local TNF, gene silencing provided rapid and long-term suppression of arthritis progression and reduced joint damage compared with that observed in control groups. Treatment with rAAV5-shTNF was associated with decreased proliferation and interferon-, production by antigen-stimulated T cells from draining lymph nodes, and the potency of this treatment was similar to that observed with other treatment strategies targeting TNF, at the protein level, either locally or systemically. Conclusion Our data present the first proof-of-concept for the application of rAAV5-mediated RNAi-based gene therapy for local blockade of inflammation in experimental arthritis. [source] Development of an in vitro cell culture model of hepatic steatosis using hepatocyte-derived reporter cells,BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2009Amol V. Janorkar Abstract Fatty liver disease is a problem of growing clinical importance due to its association with the increasingly prevalent conditions of obesity and diabetes. While steatosis represents a reversible state of excess intrahepatic lipid, it is also associated with increased susceptibility to oxidative and cytokine stresses and progression to irreversible hepatic injury characterized by steatohepatitis, cirrhosis, and malignancy. Currently, the molecular mechanisms underlying progression of this dynamic disease remain poorly understood, particularly at the level of transcriptional regulation. We recently constructed a library of stable monoclonal green fluorescent protein (GFP) reporter cells that enable transcriptional regulation to be studied dynamically in living cells. Here, we adapt the reporter cells to create a model of steatosis that will allow investigation of transcriptional dynamics associated with the development of steatosis and the response to subsequent "second hit" stresses. The reporter model recapitulates many cellular features of the human disease, including fatty acid uptake, intracellular triglyceride accumulation, increased reactive oxygen species accumulation, decreased mitochondrial membrane potential, increased susceptibility to apoptotic cytokine stresses, and decreased proliferation. Finally, to demonstrate the utility of the reporter cells for studying transcriptional regulation, we compared the transcriptional dynamics of nuclear factor ,B (NF,B), heat shock response element (HSE), and glucocorticoid response element (GRE) in response to their classical inducers under lean and fatty conditions and found that intracellular lipid accumulation was associated with dose-dependent impairment of NF,B and HSE but not GRE activation. Thus, steatotic reporter cells represent an efficient model for studying transcriptional responses and have the potential to provide important insights into the progression of fatty liver disease. Biotechnol. Bioeng. 2009;102: 1466,1474. © 2008 Wiley Periodicals, Inc. [source] Effects of the PKC inhibitor PD 406976 on cell cycle progression, proliferation, PKC isozymes and apoptosis in glioma and SVG-transformed glial cellsCELL PROLIFERATION, Issue 2 2005C. Russell However, reports differ on which PKC isozymes are responsible for glioma proliferation. As a means to further elucidate this, the objectives of our research were to determine how inhibition of PKC-,, PKC-, and PKCµ with PD 406976 regulates the cell cycle, cell proliferation and PKC during glioma growth and development. To establish the cell cycle effects of PD 406976 on brain cells (SVG, U-138MG and U-373MG glioma cells), specimens were treated with either dimethylsulfoxide (DMSO; control) or PD 406976 (2 µm). Results from flow cytometry demonstrated that PD 406976 delayed the entry DNA synthesis phase in SVG cells and delayed the number of cells entering and exiting the DNA synthesis phase in both U-138MG and U-373MG cells, indicating that PD 406976 may inhibit G1/S and S phase progression. Assessment of cell viability demonstrated a cytostatic effect of PD 406976 on SVG, U-138MG and U-373MG glioma cell proliferation. The PD 406976-induced decreased proliferation was sustained at 48,96 h. A PKC activity assay was quantified and demonstrated that exposure of SVG and U-373MG glioma cells to PD 406976 suppressed PKC activity. Western blotting demonstrated reduced PKC-,1, PKC-, and PKC-, protein content in cells treated with PD 406976. We determined that the growth inhibitory effect of PD 406976 was not as a result of apoptosis. [source] The role of HIF-1 alfa in apoptosis and proliferative retinopathyACTA OPHTHALMOLOGICA, Issue 2009R FERNANDES Purpose In diabetic retinal capillaries, the earlier morphological changes include pericyte loss and acellular capillary formation. These processes are regulated by interactions among a number of pro- and antiangiogenic factors, including vascular endothelial growth factor (VEGF) and Angiopoietin-2 (Ang-2). We hypothesize that increased levels of methylglyoxal (MGO) in RPE cells disrupts the balance of VEGF/Ang-2 promoting endothelial cell death and vessel regression. Methods Rats with moderate T2D, and retinal cell lines of epithelium (RPE) and endothelium (EC) were used. MGO levels were determined by HPLC. Immunohistochemical analysis was performed in retinas stained for VEGF and Ang-2. RPE cells were incubated with MGO in hypoxic conditions and the level of VEGF and Ang-2 was assessed by ELISA. EC were subsequently treated with the pre-conditioned media of the RPE cells. Cell death was determined by WB against Bax and Bcl-2, while EC proliferation was assessed by BrdU-incorporation and fibrin gel angiogenic assays. Results Hyperglycemia increases the levels of MGO in retinas and RPE cells. MGO increases the levels of Ang-2 and strongly decreases the levels of VEGF in response to hypoxia. VEGF downregulation appears to result both from increased HIF-1, degradation and low HIF-1 transcriptional activity. The MGO-induced imbalance in the VEGF/Ang-2 significantly increases the expression of Bax and decreases the levels of Bcl-2. Consistently, this imbalance leads to decreased proliferation of the EC. Conclusion In diabetic retinopathy, accumulation of MGO may play a role in VEGF/Ang-2 imbalance, triggering the activation of the apoptotic cascade which induces decreased proliferation of retinal endothelial cells and as a consequence vessels regression [source] |