Decomposer Organisms (decomposer + organism)

Distribution by Scientific Domains


Selected Abstracts


Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions , a review

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2006
M. v. Lützow
Summary Mechanisms for C stabilization in soils have received much interest recently due to their relevance in the global C cycle. Here we review the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils: (i) selective preservation due to recalcitrance of OM, including plant litter, rhizodeposits, microbial products, humic polymers, and charred OM; (ii) spatial inaccessibility of OM against decomposer organisms due to occlusion, intercalation, hydrophobicity and encapsulation; and (iii) stabilization by interaction with mineral surfaces (Fe-, Al-, Mn-oxides, phyllosilicates) and metal ions. Our goal is to assess the relevance of these mechanisms to the formation of soil OM during different stages of decomposition and under different soil conditions. The view that OM stabilization is dominated by the selective preservation of recalcitrant organic components that accumulate in proportion to their chemical properties can no longer be accepted. In contrast, our analysis of mechanisms shows that: (i) the soil biotic community is able to disintegrate any OM of natural origin; (ii) molecular recalcitrance of OM is relative, rather than absolute; (iii) recalcitrance is only important during early decomposition and in active surface soils; while (iv) during late decomposition and in the subsoil, the relevance of spatial inaccessibility and organo-mineral interactions for SOM stabilization increases. We conclude that major difficulties in the understanding and prediction of SOM dynamics originate from the simultaneous operation of several mechanisms. We discuss knowledge gaps and promising directions of future research. [source]


Effects of ultraviolet radiation on litter decomposition depend on precipitation and litter chemistry in a shortgrass steppe ecosystem

GLOBAL CHANGE BIOLOGY, Issue 10 2007
LESLIE A. BRANDT
Abstract We examined the effect of altered levels of ultraviolet (UV) radiation (280,400 nm) and different amounts of precipitation on the decomposition rates of litter of contrasting carbon to nitrogen ratio (C : N) in a 3-year field experiment in a shortgrass steppe (SGS) ecosystem. UV radiation was either blocked or passed under clear plastic tents where precipitation was applied to simulate a very dry or very wet year. These treatments minimized or maximized the abiotic component (UV) or the biotic component (biological activity of decomposer organisms) of decomposition to assess potential interactions between the two. Initial litter chemistry varied in response to having been grown under ambient or elevated atmospheric CO2 concentrations. While precipitation and litter chemistry were the most important drivers in decomposition in this system, UV radiation increased decomposition rates under dry conditions in litter with higher C : N ratios. Exposure to UV radiation slightly increased the amount of holocellulose that was lost from the litter. UV exposure did not affect the decomposition of the lignin fraction. Increased decomposition with UV radiation was accompanied by a decrease in N immobilization over the summer months. These results suggest that the effects of UV radiation on decomposition rates may be primarily abiotic, caused by direct photochemical degradation of the litter. Our results demonstrate that the role of UV radiation in litter decomposition in semiarid systems depends on the aridity of the system and the chemistry of the litter. [source]


Stabilization mechanisms of organic matter in four temperate soils: Development and application of a conceptual model,

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 1 2008
Margit von Lützow
Abstract Based on recent findings in the literature, we developed a process-oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co-action of various processes that are active under specific pedogenetic conditions. To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo-mineral interactions for OM stabilization in the passive pool is well-known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site- and horizon-specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo-mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo-mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool. [source]


Effects on litter-dwelling earthworms and microbial decomposition of soil-applied imidacloprid for control of wood-boring insects

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 2 2008
David P Kreutzweiser
Abstract BACKGROUND: Imidacloprid is an effective, systemic insecticide for the control of wood-boring insect pests in trees. Systemic applications to trees are often made by soil injections or drenches, and the resulting imidacloprid concentrations in soil or litter may pose a risk of harm to natural decomposer organisms. The authors tested effects of imidacloprid on survival and weight gain or loss of the earthworms Eisenia fetida (Savigny) and Dendrobaena octaedra (Savigny), on leaf consumption rates and cocoon production by D. octaedra and on microbial decomposition activity in laboratory microcosms containing natural forest litter. RESULTS:Dendrobaena octaedra was the most sensitive of the two earthworm species, with an LC50 of 5.7 mg kg,1, an LC10 of about 2 mg kg,1 and significant weight losses among survivors at 3 mg kg,1. Weight losses resulted from a physiological effect rather than from feeding inhibition. There were no effects on cocoon production among survivors at 3 mg kg,1. The LC50 for E. fetida was 25 mg kg,1, with significant weight losses at 14 mg kg,1. There were no significant effects on microbial decomposition of leaf material at the maximum test concentration of 1400 mg kg,1. CONCLUSION: The results indicate that, when imidacloprid is applied as a systemic insecticide to the soil around trees, it is likely to cause adverse effects on litter-dwelling earthworms if concentrations in the litter reach or exceed about 3 mg kg,1. Copyright © 2007 Her Majesty the Queen in the Right of Canada, Canadian Forest Service. Published by John Wiley & Sons, Ltd. [source]