Death Receptors (death + receptor)

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by Death Receptors

  • death receptor Fa

  • Selected Abstracts


    Fas/CD95/APO-1 Can Function as a Death Receptor for Neuronal Cells in Vitro and in Vivo and is Upregulated Following Cerebral Hypoxic-Ischemic Injury to the Developing Rat Brain

    BRAIN PATHOLOGY, Issue 1 2000
    Ursula Felderhoff-Mueser
    Fas/CD95/Apo-1 is a cell surface receptor that transduces apoptotic death signals following activation and has been implicated in triggering apoptosis in infected or damaged cells in disease states. Apoptosis is a major mechanism of neuronal loss following hypoxic-ischemic injury to the developing brain, although the role of Fas in this process has not been studied in detail. In the present study, we have investigated the expression and function of Fas in neuronal cells in vitro and in vivo. Fas was found to be expressed in the 14 day old rat brain, with strongest expression in the cortex, hippocampus and cerebellum. Cross-linking of Fas induced neuronal apoptosis both in neuronal PC12 cells in culture and following intracerebral injection in vivo, indicating that neuronal Fas was functional as a death receptor. This death was shown to be caspase dependent in primary neuronal cultures and was blocked by the selective caspase 8 inhibitor IETD. Finally, cerebral hypoxia-ischemia resulted in a strong lateralised upregulation of Fas in the hippocampus, that peaked six to twelve hours after the insult and was greater on the side of injury. These results suggest that Fas may be involved in neuronal apoptosis following hypoxic-ischemic injury to the developing brain. [source]


    Expression of caspase and apoptotic signal pathway induced by sulfur dioxide

    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2 2010
    Juli Bai
    Abstract Sulfur dioxide (SO2) is a common air pollutant that is released in low concentrations into the atmosphere and in higher concentrations in some work places. In the present study, male Wistar rats were housed in exposure chambers and treated with 14.00 ± 1.01, 28.00 ± 1.77, and 56.00 ± 3.44 mg/m3 SO2 for 7 days (6 hr/day), while control rats were exposed to filtered air under the same conditions. The mRNA and protein levels of caspase-3, caspase-8, and caspase-9 were analyzed using a real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) assay and an immunohistochemistry method. Activities of caspases were detected using colorimetric and fluorescent assays. Chromatin degradation and cell morphological changes were investigated by TUNEL assay and H&E staining in livers and lungs, respectively. The results showed that mRNA levels, protein levels and activities of caspase-3, caspase-8, and caspase-9 were increased in a dose-dependent manner in livers and lungs of rats after SO2 inhalation. In addition, livers were infiltrated with lymphocytes, congestion and inflammation occurred in lungs, and eosinophil cells and apoptotic cells increased in both livers and lungs after SO2 inhalation. These results suggest that SO2 exposure increases the expression and activity of both initiator and and effector caspases, and may induce apoptosis in liver and lung of rats through both death receptor and mitochondrial pathways. Environ. Mol. Mutagen. 2010. © 2009 Wiley-Liss, Inc. [source]


    Apoptosis resistance in ulcerative colitis: High expression of decoy receptors by lamina propria T cells

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2006
    Raja Fayad
    Abstract Intestinal mucosa is constantly exposed to normal environmental antigens. A significant number of intestinal mucosal T cells are being deleted through apoptosis. In contrast, T cells from inflamed mucosa of ulcerative colitis patients did not undergo apoptosis. In this study, we determined whether the apoptosis of normal mucosal T cells was induced by antigen receptor stimulation and further determined pathways that mediated the apoptosis. Freshly isolated lamina propria T cells were stimulated with CD3 mAb and apoptosis was determined by Annexin,V staining. Normal mucosal T cells underwent apoptosis upon CD3 mAb stimulation whereas the T cells from inflamed mucosa did not. The apoptosis in normal T cells was blocked by TRAIL-R1:Fc and an inhibiting CD95 antibody. Interestingly, decoy receptor (DcR)1, DcR2, and DcR3 that compete with death receptor (DR)4/5 and CD95 were highly expressed by the T cells from inflamed mucosa, but much lower by T cells from normal mucosa. Our data suggest that normal mucosal T cells are constantly deleted in response to environmental antigens mediated through DR4/5 and CD95 pathways and mucosal T cells from ulcerative colitis resist to undergoing apoptosis due to highly expression of DcR1, DcR2, and DcR3. [source]


    COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells

    HEPATOLOGY, Issue 3 2002
    Ugochukwu C. Nzeako
    Fas expression has been shown to negatively regulate the progression of cholangiocarcinoma cells in xenografts. However, many human cholangiocarcinomas express Fas, suggesting these cancers have developed mechanisms to inhibit Fas-mediated apoptosis. Cyclooxygenase-2 (COX-2), which generates prostanoids, is expressed by many cholangiocarcinomas. Therefore, our aim was to determine whether COX-2 expression inhibits death receptor,mediated apoptosis in KMBC cells, a cholangiocarcinoma cell line. These cells express messenger RNA for the death receptors Fas, tumor necrosis factor receptor 1 (TNF-R1), death receptor 4 (DR4), and DR5. Agonists for these death receptors, CH-11, TNF-,, and TRAIL all induced apoptosis. However, COX-2, whether induced by proinflammatory cytokines or transient transfection, only significantly inhibited Fas-mediated apoptosis. The COX-2 inhibitor NS-398 restored Fas-mediated apoptosis in COX-2 transfected cells. Prostaglandin E2 reduced apoptosis and mitochondrial depolarization after treatment with the Fas agonist CH-11. Of a variety of antiapoptotic proteins examined, COX-2/prostaglandin E2 only increased expression of Mcl-1, an antiapoptotic member of the Bcl-2 family. In conclusion, these data suggest that prostanoid generation by COX-2 specifically inhibits Fas-mediated apoptosis, likely by up-regulating Mcl-1 expression. Pharmacologic inhibition of COX-2 may be useful in augmenting Fas-mediated apoptosis of cholangiocarcinoma cells. [source]


    Granzyme B: a natural born killer

    IMMUNOLOGICAL REVIEWS, Issue 1 2003
    Sarah J. Lord
    Summary:, A main pathway used by cytotoxic T lymphocytes (CTLs) and natural killer cells to eliminate pathogenic cells is via exocytosis of granule components in the direction of the target cell, delivering a lethal hit of cytolytic molecules. Amongst these, granzyme B and perforin have been shown to induce CTL-mediated target cell DNA fragmentation and apoptosis. Once released from the CTL, granzyme B binds its receptor, the mannose-6-phosphate/insulin-like growth factor II receptor, and is endocytosed but remains arrested in endocytic vesicles until released by perforin. Once in the cytosol, granzyme B targets caspase-3 directly or indirectly through the mitochondria, initiating the caspase cascade to DNA fragmentation and apoptosis. Caspase activity is required for apoptosis to occur; however, in the absence of caspase activity, granzyme B can still initiate mitochondrial events via the cleavage of Bid. Recent work shows that granzyme B-mediated release of apoptotic factors from the mitochondria is essential for the full activation of caspase-3. Thus, granzyme B acts at multiple points to initiate the death of the offending cell. Studies of the granzyme B death receptor and internal signaling pathways may lead to critical advances in cell transplantation and cancer therapy. [source]


    Attenuated apoptosis response to Fas-ligand in active ulcerative colitis

    INFLAMMATORY BOWEL DISEASES, Issue 12 2008
    Jakob B. Seidelin MD
    Abstract Background: From mainly carcinoma cell line studies, apoptosis has been thought to play a major role in the pathogenesis of ulcerative colitis (UC). Apoptosis has been suggested to be due to a Fas ligand / Fas receptor interaction, but has never been studied in cells from patients with active UC. The aim was to investigate both the spontaneous and the cell death receptor ligand-induced apoptosis in UC. Methods: Twenty patients with UC and 16 control subjects who underwent routine colonoscopy either for the control or surveillance of their disease or where the diagnosis of irritable bowel syndrome was subsequently reached were included. Cultures of isolated colonic crypts were obtained from biopsies and cultured for 4 to 16 hours with Fas ligand or Fas ligand and costimulation with interferon-, (IFN-,). Control experiments were performed on HT29 cells. Apoptosis was assessed by independent methods. Results: Isolated colonocytes from healthy subjects or patients with remission in UC had a dose-dependent response to Fas ligand. This response was abolished in patients with active UC (P < 0.002), and costimulation with IFN-, did not alter this response. Patients with active UC had an increased apoptosis rate of 9.5% compared with controls (P < 0.05). Conclusions: The current study indicates that colonocytes do not respond to cytokine exposure and inflammation by an increased vulnerability, as previously thought. Colonocytes seem to activate cytoprotective programs in response to inflammation. Apart from supporting the regeneration process during inflammation, this response could additionally cause an increased susceptibility to neoplastic transformation. (Inflamm Bowel Dis 2008) [source]


    Ionizing radiation as a response-enhancing agent for CD95-mediated apoptosis

    INTERNATIONAL JOURNAL OF CANCER, Issue 4 2001
    Michael A. Sheard Ph.D.
    Abstract CD95 (Fas/APO-1) is a death receptor on the surface of a wide variety of cell types. In most cells examined, ionizing radiation acts as a response-enhancing agent for CD95-mediated cell death. Although DNA-damaging radiation appears to modulate CD95-mediated signals through multiple mechanisms, the only well-characterized mechanism is activation of the tumor-suppressor protein p53, which transcriptionally regulates the expression of CD95 on various cell types. The ligand for CD95 is expressed by activated lymphocytes and natural-killer cells, which produce factors that sensitize cells resistant to CD95-mediated cell death. Ligation of CD95 on irradiated tumor cells might be achievable using emerging modalities that reactivate the stalled anti-tumor immune response. © 2001 Wiley-Liss, Inc. [source]


    Caspase-8 in Apoptosis: The Beginning of "The End"?

    IUBMB LIFE, Issue 2 2000
    Marieke Kruidering
    Abstract Caspase-8 is a member of the cysteine proteases, which are implicated in apoptosis and cytokine processing. Like all caspases, caspase-8 is synthesized as an inactive single polypeptide chain zymogen procaspase and is activated by proteolytic cleavage, through either autoactivation after recruitment into a multimeric complex or trans-cleavage by other caspases. Thus, ligand binding-induced trimerization of death receptors results in recruitment of the receptor-specific adapter protein Fas-associated death domain (FADD), which then recruits caspase-8. Activated caspase-8 is known to propagate the apoptotic signal either by directly cleaving and activating downstream caspases or by cleaving the BH3 Bcl2-interacting protein, which leads to the release of cytochrome c from mitochondria, triggering activation of caspase-9 in a complex with dATP and Apaf-1. Activated caspase-9 then activates further "downstream caspases, " including caspase-8. Knockout data indicate that caspase-8 is required for killing induced by the death receptors Fas, tumor necrosis factor receptor 1, and death receptor 3. Moreover, caspase-8-/- mice die in utero as a result of defective development of heart muscle and display fewer hematopoietic progenitor cells, suggesting that the FADD/caspase-8 pathway is absolutely required for growth and development of specific cell types. [source]


    DR5-mediated DISC controls caspase-8 cleavage and initiation of apoptosis in human glioblastomas

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6a 2010
    Anita C. Bellail
    Abstract To explore the molecular mechanisms by which glioblastomas are resistant to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), we examined TRAIL signalling pathways in the tumours. TRAIL has four membrane-anchored receptors, death receptor 4/5 (DR4/5) and decoy receptor 1/2 (DcR1/2). Of these receptors, only DR5 was expressed consistently in glioblastoma cell lines and tumour tissues, ruling out the role of DcR1/2 in TRAIL resistance. Upon TRAIL binding, DR5 was homotrimerized and recruited Fas-associated death domain (FADD) and caspase-8 for the assembly of death-inducing signalling complex (DISC) in the lipid rafts of the plasma membrane. In the DISC, caspase-8 was cleaved and initiated apoptosis by cleaving downstream caspases in TRAIL-sensitive glioblastoma cells. In TRAIL-resistant cells, however, DR5-mediated DISC was modified by receptor-interacting protein (RIP), cellular FADD-like interleukin-1,-converting enzyme inhibitory protein (c-FLIP) and phosphoprotein enriched in diabetes or in astrocyte-15 (PED/PEA-15). This DISC modification occurred in the non-raft fractions of the plasma membrane and resulted in the inhibition of caspase-8 cleavage and activation of nuclear factor-,B (NF-,B). Treatment of resistant cells with parthenolide, an inhibitor of inhibitor of ,B (I-,B), eliminated TRAIL-induced NF-,B activity but not TRAIL resistance. In contrast, however, targeting of RIP, c-FLIP or PED/PEA-15 with small interfering RNA (siRNA) led to the redistribution of the DISC from non-rafts to lipid rafts and eliminated the inhibition of caspase-8 cleavage and thereby TRAIL resistance. Taken together, this study indicates that the DISC modification by RIP, c-FLIP and PED/PEA-15 is the most upstream event in TRAIL resistance in glioblastomas. [source]


    Recombinant vascular basement membrane derived multifunctional peptide blocks endothelial cell angiogenesis and neovascularization,

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2010
    Chengkun Wang
    Abstract Angiogenesis is an innovative target in the therapy of cancer and other diseases, but the effects of anti-angiogenic drugs have been rather modest in clinical trials. We have developed a small peptide, recombinant vascular basement membrane derived multifunctional peptide (rVBMDMP), which significantly inhibits endothelial cells in vitro. Here we test the mechanisms of rVBMDMP in angiogenesis balance in assays of tubule formation, colony formation, and apoptosis in HUVE-12 endothelial cells. We also analyzed the differential expression of phosphorylation proteins and related genes in a protein phosphorylation chip and extracellular matrix adhesion molecule cDNA microarray, and validated changes with Western blot or real-time quantitative PCR, respectively. rVBMDMP dose-dependently inhibited colony formation, induced apoptosis, and inhibited in vitro tubule formation. rVBMDMP increased the phosphorylation of 88 signal proteins, including caspase-3, death receptor 3, 4, and 5, and integrin ,V, ,1, and ,3, and down-regulated 41 signal proteins, including EGFR, pEGFR, VEGFR-1, and survivin versus control. rVBMDMP upregulated 14 genes, including collagen 4, 7, and 27, and down-regulated 21 genes, including integrin ,V,3, MMP10, and MMP12. Our study suggests that rVBMDMP inhibits angiogenesis and may be a viable drug candidate in anti-angiogenesis and anticancer therapies. J. Cell. Biochem. 111: 453,460, 2010. © 2010 Wiley-Liss, Inc. [source]


    Blockage of NF-,B by IKK,- or RelA-siRNA rather than the NF-,B super-suppressor I,B, mutant potentiates adriamycin-induced cytotoxicity in lung cancer cells

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008
    Wenshu Chen
    Abstract Ambiguous roles of genotoxic anticancer therapeutic-induced NF-,B activation in regulating gene expression (activation or suppression) and apoptosis (anti- or pro-apoptosis) have recently been suggested. In order to clarify this controversy and determine the usefulness of NF-,B blockage for sensitizing anticancer therapy, we have systematically investigated the effect of distinct NF-,B-blocking approaches on lung cancer cells' responses to Adriamycin-induced cytotoxicity. The results show that Adriamycin-induced NF-,B activation functions as a transcriptional activator triggering the expression of anti-apoptotic genes. Blocking NF-,B with IKK,- or RelA siRNA substantially sensitized Adriamycin-induced cytotoxicity, suggesting that the NF-,B pathway could be a target for sensitizing lung cancer cells to Adriamycin's anticancer effect. Surprisingly, although it effectively blocks NF-,B activation, the I,B, super-suppressor (I,B,AA) antagonized Adriamycin-induced cell death. Additionally, the induction of death receptor 5 (DR5), which contributes to Adriamycin-induced cytotoxicity, was not affected by NF-,B blockage. Thus, our results suggest that Adriamycin-induced NF-,B is a transcriptional activator that protects lung cancer cells against apoptosis, and IKK,- or RelA siRNA rather than I,B,AA is an appropriate NF-,B blocking approach for sensitizing lung cancer cells to Adriamycin-induced cytotoxicity. J. Cell. Biochem. 105: 554,561, 2008. © 2008 Wiley-Liss, Inc. [source]


    Moderate Alcohol Consumption Aggravates High-Fat Diet Induced Steatohepatitis in Rats

    ALCOHOLISM, Issue 3 2010
    Yan Wang
    Background:, Nonalcoholic steatohepatitis (NASH) develops in the absence of chronic and excessive alcohol consumption. However, it remains unknown whether moderate alcohol consumption aggravates liver inflammation in pre-existing NASH condition. Methods:, Sprague-Dawley rats were first fed ad libitum with Lieber-DeCarli high-fat diet (71% energy from fat) for 6 weeks to induce NASH, as demonstrated previously. Afterwards, these rats were continuously fed with high-fat diet (HFD, 55% total energy from fat) or high fat plus alcohol diet (HFA, 55% energy from fat and 16% energy from alcohol) for an additional 4 weeks. Pathological lesions including fat accumulation and inflammatory foci in liver were examined and graded. Lipid peroxidation and apoptotic hepatocytes in the liver were assessed. The mRNA expressions of tumor necrosis factor-, (TNF,) and TNF receptor 1 (TNF-R1), Fas death receptor (Fas) and Fas ligant (FasL), IL-1, and IL-12 were determined by real-time PCR. Protein levels of total and cleaved caspase-3, CYP2E1, Bax, and Bcl-2 were measured by western blotting. Results:, The number of hepatic inflammatory foci and apoptotic hepatocytes were significantly increased in rats fed with HFA as compared with those in HFD-fed rats. The aggravated inflammatory response and cellular apoptosis mediated by HFA were associated with elevated mRNA expression of Fas/FasL and cleaved caspase-3 protein. Although no significant differences were observed between HFD and HFA groups, the levels of lipid peroxidation, Bax and Bcl-2 protein concentration, and mRNA levels of other inflammatory cytokines were significantly higher in these 2 groups than those in the control group. Conclusions:, These data suggest that even moderate alcohol consumption can cause more hepatic inflammation and cellular apoptosis in a pre-existing NASH condition. [source]


    1,1-bis(3,-indolyl)-1-(p -methoxyphenyl)methane activates Nur77-independent proapoptotic responses in colon cancer cells

    MOLECULAR CARCINOGENESIS, Issue 4 2008
    Sung Dae Cho
    Abstract 1,1-Bis(3,-indolyl)-1-(p -methoxyphenyl)methane (DIM-C-pPhOCH3) is a methylene-substituted diindolylmethane (C-DIM) analog that activates the orphan receptor nerve growth factor-induced-B, (NGFI-B,, Nur77). RNA interference studies with small inhibitory RNA for Nur77 demonstrate that DIM-C-pPhOCH3 induces Nur77-dependent and -independent apoptosis, and this study has focused on delineating the Nur77-independent proapoptotic pathways induced by the C-DIM analog. DIM-C-pPhOCH3 induced caspase-dependent apoptosis in RKO colon cancer cells through decreased mitochondrial membrane potential which is accompanied by increased mitochondrial bax/bcl-2 ratios and release of cytochrome c into the cytosol. DIM-C-pPhOCH3 also induced phosphatidylinositol-3-kinase-dependent activation of early growth response gene-1 which, in turn, induced expression of the proapoptotic nonsteroidal anti-inflammatory drug-activated gene-1 (NAG1) in RKO and SW480 colon cancer cells. Moreover, DIM-C-pPhOCH3 also induced NAG-1 expression in colon tumors in athymic nude mice bearing RKO cells as xenografts. DIM-C-pPhOCH3 also activated the extrinsic apoptosis pathway through increased phosphorylation of c- jun N-terminal kinase which, in turn, activated C/EBP homologous transcription factor (CHOP) and death receptor 5 (DR5). Thus, the effectiveness of DIM-C-pPhOCH3 as a tumor growth inhibitor is through activation of Nur77-dependent and -independent pathways. © 2007 Wiley-Liss, Inc. [source]


    Contribution of death receptor and mitochondrial pathways to Fas-mediated apoptosis in the prostatic carcinoma cell line PC3

    THE PROSTATE, Issue 4 2002
    Natalya V. Guseva
    Abstract BACKGROUND Two main pathways of apoptosis in mammalian cells have been described: the death receptor pathway and the mitochondrial pathway. Two different cell types have been identified for Fas-mediated apoptosis, each using almost exclusively one of two different signaling pathways. Human prostatic carcinoma cell line, PC3 is sensitive to Fas-mediated apoptosis, but relation of receptor and mitochondrial pathways is not clear. METHODS Cell viability was estimated by calcein assay. Apoptosis was determined by preparation of DNA ladder. Expression of Fas-associated death domain-dominant negative (FADD-DN) and Bcl-2, activation of caspases, PARP, DFF45, Bid cleavage, and cytochrome c release were assessed using Western blotting techniques. [35S] Methionine-labeled caspase-3 was transcribed in vitro and translated using the TNT kit (Promega). A vector containing caspase-3 was prepared by the ligation of EcoR I/BamHI flanked PCR fragment of full size caspase-3 cDNA into pBlusckript II SK(+/,) (Stratagen). RESULTS Overexpression of both FADD-DN and Bcl-2 genes prevent Fas-mediated apoptosis in PC3. As predicted, overexpression of FADD-DN prevented activation of caspase-8 and Bid cleavage and attenuated the release of cytochrome c and activation of caspases -2, -7, and -9. Bcl-2 overexpression did not affect caspase-8 activation and cleavage of Bid but blocked the release of cytochrome c and activation of mitochondria localized caspases -2, -7, and,9. Overexpression of FADD-DN and Bcl-2 affected the activation of caspase-3 and PARP cleavage differently: FADD-DN attenuated the activation of caspase-3 and PARP cleavage whereas Bcl-2 overexpression prevented caspase-3 activation and completely blocked cleavage of PARP. CONCLUSIONS These data suggest that activation of caspase-8 is necessary but not sufficient to complete Fas-mediated apoptosis in PC3 cells without activation of the mitochondrial pathway. In addition, caspase-3 activation after Fas-receptor ligation involves two steps and is dependent on mitochondrial activation. Prostate 51: 231,240, 2002. © 2002 Wiley-Liss, Inc. [source]


    Fas/CD95/APO-1 Can Function as a Death Receptor for Neuronal Cells in Vitro and in Vivo and is Upregulated Following Cerebral Hypoxic-Ischemic Injury to the Developing Rat Brain

    BRAIN PATHOLOGY, Issue 1 2000
    Ursula Felderhoff-Mueser
    Fas/CD95/Apo-1 is a cell surface receptor that transduces apoptotic death signals following activation and has been implicated in triggering apoptosis in infected or damaged cells in disease states. Apoptosis is a major mechanism of neuronal loss following hypoxic-ischemic injury to the developing brain, although the role of Fas in this process has not been studied in detail. In the present study, we have investigated the expression and function of Fas in neuronal cells in vitro and in vivo. Fas was found to be expressed in the 14 day old rat brain, with strongest expression in the cortex, hippocampus and cerebellum. Cross-linking of Fas induced neuronal apoptosis both in neuronal PC12 cells in culture and following intracerebral injection in vivo, indicating that neuronal Fas was functional as a death receptor. This death was shown to be caspase dependent in primary neuronal cultures and was blocked by the selective caspase 8 inhibitor IETD. Finally, cerebral hypoxia-ischemia resulted in a strong lateralised upregulation of Fas in the hippocampus, that peaked six to twelve hours after the insult and was greater on the side of injury. These results suggest that Fas may be involved in neuronal apoptosis following hypoxic-ischemic injury to the developing brain. [source]


    Evaluation of apoptosis in cytologic specimens

    DIAGNOSTIC CYTOPATHOLOGY, Issue 9 2010
    Viktor Shtilbans Ph.D.
    Abstract A hallmark of neoplasia is dysregulated apoptosis, programmed cell death. Apoptosis is crucial for normal tissue homeostasis. Dysregulation of apoptotic pathways leads to reduced cytocidal responses to chemotherapeutic drugs or radiation and is a frequent contributor to therapeutic resistance in cancer. The literature pertaining to detection of apoptotic pathway constituents in cytologic specimens is reviewed herein. Virtually all methods for detecting apoptosis, including classic cytomorphologic evaluation, TUNEL assay, immunocytochemistry, and gene sequence analysis, may be applied to cytologic samples as well as tissue. Components of both intrinsic and extrinsic apoptotic pathways have been studied, including many reports examining p53 and bcl-2, as well as studies of caspase inhibitory proteins XIAP and survivin, death receptors and ligands such as Fas, Fas-ligand, and TRAIL. p53 undergoes oncogenic alteration more than any other protein; its immunocytochemical detection almost always connotes loss of its physiologic role as an inducer of apoptosis in response to a damaged genome. Several reports establish cytologic sampling as being as useful as tissue sampling. In one respect cytologic sampling is superior to tissue sampling in particular, by allowing clinicians to repeat sampling of the same tumor before and after administration of therapy; a number of reports use this approach to attempt to predict tumor response by assaying the effect of chemotherapy on the induction of apoptosis. Diagn. Cytopathol. 2010;38:685,697. © 2010 Wiley-Liss, Inc. [source]


    The molecular determinants of sunburn cell formation

    EXPERIMENTAL DERMATOLOGY, Issue 3 2001
    G. Murphy
    Abstract: Sunburn cell (SBC) formation in the epidermis is a characteristic consequence of ultraviolet radiation (UVR) exposure at doses around or above the minimum erythema dose. SBC have been identified morphologically and biologically as keratinocytes undergoing apoptosis. There is evidence that SBC formation is a protective mechanism to eliminate cells at risk of malignant transformation. The level of DNA photodamage is a major determinant of SBC induction by a process controlled by the tumor suppressor gene p53. However, extra-nuclear events also contribute to SBC formation, such as the activation of death receptors including CD95/Fas. UVR triggers death receptors either by direct activation of these surface molecules or by inducing the release of their ligands such as CD95 ligand or tumor necrosis factor. Oxidative stress also appears to be involved, probably via mitochondrial pathways, resulting in the release of cytochrome C. Pathways which modify SBC formation are now extensively studied given the importance of apoptosis in eliminating irreparably damaged cells. A greater understanding of the mechanisms that induce and prevent UVR-induced apoptosis will contribute to our understanding of mechanisms relevant in genomic integrity. [source]


    The initiator caspase, caspase-10,, and the BH-3-only molecule, Bid, demonstrate evolutionary conservation in Xenopus of their pro-apoptotic activities in the extrinsic and intrinsic pathways

    GENES TO CELLS, Issue 7 2006
    Katsuya Kominami
    Two major apoptotic signaling pathways have been defined in mammals, the extrinsic pathway, initiated by ligation of death receptors, and the intrinsic pathway, triggered by cytochrome c release from mitochondria. Here, we identified and characterized the Xenopus homologs of caspase-10 (xCaspase-10,), a novel initiator caspase, and Bid (xBid), a BH3-only molecule of the Bcl-2 family involved in both the extrinsic and intrinsic pathways. Exogenous expression of these molecules induced apoptosis of mammalian cells. By biochemical and cytological analyses, we clarified that xCaspase-10, and xBid exhibit structural and functional similarities to their mammalian orthologues. We also detected xCaspase-10, and xBid transcripts during embryogenesis by whole-mount in situ hybridization and RT-PCR analysis. Microinjection of mRNA encoding a protease-defect xCaspase-10, mutant into embryos resulted in irregular development. Enforced expression of active xBid induced cell death in developing embryos. Using transgenic frogs established to allow monitoring of caspase activation in vivo, we confirmed that this form of cell death is caspase-dependent apoptosis. Thus, we demonstrated that the machinery governing the extrinsic and intrinsic apoptotic pathways are already established in Xenopus embryos. Additionally, we propose that the functions of the initiator caspase and BH3-only molecule are evolutionarily conserved in vertebrates, functioning during embryonic development. [source]


    The adaptor molecule FADD from Xenopus laevis demonstrates evolutionary conservation of its pro-apoptotic activity

    GENES TO CELLS, Issue 12 2004
    Kazuhiro Sakamaki
    FADD is an adaptor protein that transmits apoptotic signals from death receptors such as Fas to downstream initiator caspases in mammals. We have identified and characterized the Xenopus orthologue of mammalian FADD (xFADD). xFADD contains both a death effector domain (DED) and a death domain (DD) that are structurally homologous to those of mammalian FADD. We observed xFADD binding to Xenopus caspase-8 and caspase-10 as well as to human caspase-8 and Fas through interactions with their homophilic DED and DD domains. When over-expressed, xFADD was also able to induce apoptosis in wild-type mouse embryonic fibroblasts (MEF), but not in caspase-8-deficient MEF cells. In contrast, DED-deficient xFADD (xFADDdn) acted as a dominant-negative mutant and prevented Fas-mediated apoptosis in mammalian cell lines. These results indicate that xFADD transmits apoptotic signals from Fas to caspase-8. Furthermore, we found that transgenic animals expressing xFADD in the developing heart or eye under the control of tissue-specific promoters show abnormal phenotypes. Taken together, these results suggest that xFADD can substitute functionally for its mammalian homologue in death receptor-mediated apoptosis, and we suggest that xFADD functions as a pro-apoptotic adaptor molecule in frogs. Thus, the structural and functional similarities between xFADD and mammalian FADD provide evidence that the apoptotic pathways are evolutionally conserved across vertebrate species. [source]


    Expression of non-signaling membrane-anchored death receptors protects murine livers in different models of hepatitis,,

    HEPATOLOGY, Issue 2 2006
    Delphyne Descamps
    Fas and tumor necrosis factor receptor 1 (TNFR1) are death receptors involved in various diseases such as hepatitis, sepsis, or graft rejection. Neutralizing antibodies to death ligands or soluble death receptors can inhibit cell death; however, they induce side effects because of their systemic actions. To specifically block death signaling to target cells, we created death domain,deficient (,DD) membrane-anchored receptors, delivered to the liver by either recombinant adenovirus or hydrodynamic pressure of nonviral recombinant plasmids. In anti-Fas antibody-induced fulminant hepatitis, mice expressing recombinant Fas-decoy receptors (Fas,DD) in their livers were completely protected against apoptosis and survived fulminant hepatitis. In T-cell,dependent concanavalin A,induced autoimmune hepatitis, Fas,DD antagonist expression prevented hepatocyte damage and mouse death. Finally, TNFR1,DD effectively protected mice against LPS-induced septic shock. In conclusion, such ,DD-decoy receptors act as dominant-negative receptors exerting local inhibition, while avoiding systemic neutralization of apoptosis ligands, and might have therapeutic potential in hepatitis. (HEPATOLOGY 2006;44:399,409.) [source]


    Bid-dependent generation of oxygen radicals promotes death receptor activation,induced apoptosis in murine hepatocytes

    HEPATOLOGY, Issue 2 2004
    Wen-Xing Ding
    Activation of tumor necrosis factor receptor 1 or Fas leads to the generation of reactive oxygen species, which are important to the cytotoxic effects of tumor necrosis factor , (TNF-,) or Fas ligand. However, how these radicals are generated following receptor ligation is not clear. Using primary hepatocytes, we found that TNF-, or anti,Fas antibody,induced burst of oxygen radicals was mainly derived from the mitochondria. We discovered that Bid,a pro-death Bcl-2 family protein activated by ligated death receptors,was the main intracellular molecule signaling the generation of the radicals by targeting to the mitochondria and that the majority of oxygen radical production was dependent on Bid. Reactive oxygen species contributed to cell death and caspase activation by promoting FLICE-inhibitory protein degradation and mitochondrial release of cytochrome c. For the latter part, the oxygen radicals did not affect Bak oligomerization but instead promoted mitochondrial cristae reorganization and membrane lipid peroxidation. Antioxidants could reverse these changes and therefore protect against TNF-, or anti,Fas-induced apoptosis. In conclusion, our studies established the signaling pathway from death receptor engagement to oxygen radical generation and determined the mechanism by which reactive oxygen species contributed to hepatocyte apoptosis following death receptor activation. (HEPATOLOGY 2004;40:403,413.) [source]


    Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress,induced caspase-12 activation

    HEPATOLOGY, Issue 3 2002
    Qing Xie
    Activation of death receptors and mitochondrial damage are well-described common apoptotic pathways. Recently, a novel pathway via endoplasmic reticulum (ER) stress has been reported. We assessed the role of tauroursodeoxycholic acid (TUDCA) in inhibition of caspase-12 activation and its effect on calcium homeostasis in an ER stress-induced model of apoptosis. The human liver-derived cell line, Huh7, was treated with thapsigargin (TG) to induce ER stress. Typical morphologic changes of ER stress preceded development of apoptotic changes, including DNA fragmentation and cleavage of poly (adenosine diphosphate-ribose) polymerase (PARP), as well as activation of caspase-3 and -7. Elevation of intracellular calcium levels without loss of mitochondrial membrane potential (MMP) was shown using Fluo-3/Fura-red labeling and flow cytometry, and confirmed by induction of Bip/GRP78, a calcium-dependent chaperon of ER lumen. These changes were accompanied by procaspase-12 processing. TUDCA abolished TG-induced markers of ER stress; reduced calcium efflux, induction of Bip/GRP78, and caspase-12 activation; and subsequently inhibited activation of effector caspases and apoptosis. In conclusion, we propose that mitochondria play a secondary role in ER-mediated apoptosis and that TUDCA prevents apoptosis by blocking a calcium-mediated apoptotic pathway as well as caspase-12 activation. This novel mechanism of TUDCA action suggests new intervention methods for ER stress-induced liver disease. [source]


    COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells

    HEPATOLOGY, Issue 3 2002
    Ugochukwu C. Nzeako
    Fas expression has been shown to negatively regulate the progression of cholangiocarcinoma cells in xenografts. However, many human cholangiocarcinomas express Fas, suggesting these cancers have developed mechanisms to inhibit Fas-mediated apoptosis. Cyclooxygenase-2 (COX-2), which generates prostanoids, is expressed by many cholangiocarcinomas. Therefore, our aim was to determine whether COX-2 expression inhibits death receptor,mediated apoptosis in KMBC cells, a cholangiocarcinoma cell line. These cells express messenger RNA for the death receptors Fas, tumor necrosis factor receptor 1 (TNF-R1), death receptor 4 (DR4), and DR5. Agonists for these death receptors, CH-11, TNF-,, and TRAIL all induced apoptosis. However, COX-2, whether induced by proinflammatory cytokines or transient transfection, only significantly inhibited Fas-mediated apoptosis. The COX-2 inhibitor NS-398 restored Fas-mediated apoptosis in COX-2 transfected cells. Prostaglandin E2 reduced apoptosis and mitochondrial depolarization after treatment with the Fas agonist CH-11. Of a variety of antiapoptotic proteins examined, COX-2/prostaglandin E2 only increased expression of Mcl-1, an antiapoptotic member of the Bcl-2 family. In conclusion, these data suggest that prostanoid generation by COX-2 specifically inhibits Fas-mediated apoptosis, likely by up-regulating Mcl-1 expression. Pharmacologic inhibition of COX-2 may be useful in augmenting Fas-mediated apoptosis of cholangiocarcinoma cells. [source]


    Caspases and T lymphocytes: a flip of the coin?

    IMMUNOLOGICAL REVIEWS, Issue 1 2003
    Saquib Lakhani
    Summary:, In this review, we consider the role caspases play in cell death downstream of death receptors and cell intrinsic death mechanisms. In particular, we focus on these mechanisms in antigen-induced cell death, a mechanism which regulates the number of surviving T cells at the end of an immune response. The relative role of the apoptosome as an amplifier rather than an initiator of apoptosis is considered. Several factors that regulate the susceptibility to activation-induced cell death are considered. These factors emanate from the stimulation of the T-cell receptors and include multiple pathways. Recent work has shown that death receptor signaling can play an interesting role in cell proliferation in both humans and animals. These recent findings are discussed in the light of models of death receptor signaling. [source]


    Aberrant expression of TRAIL in B chronic lymphocytic leukemia (B-CLL) cells

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2005
    Paola Secchiero
    Analysis of peripheral blood (>85% CD19+/CD5+ B) lymphocytes, obtained from 44 patients affected by B chronic lymphoid leukemia (B-CLL), showed that surface TNF-related apoptosis inducing ligand (TRAIL) was expressed in all samples and at higher levels with respect to unfractionated lymphocytes and purified CD19+ B cells, obtained from 15 normal blood donors. Of note, in a subset of B-CLL samples, the addition to B-CLL cultures of a TRAIL-R1-Fc chimera, which binds at high affinity to surface TRAIL, significantly decreased the percentage of viable cells with respect to untreated control B-CLL cells, suggesting that surface TRAIL may play an unexpected role in promoting B-CLL cell survival. In spite of the majority of B-CLL lymphocytes expressed variable surface levels of "death receptors" TRAIL-R1 and TRAIL-R2, the addition in culture of recombinant TRAIL increased (>20% vs. controls) the degree of spontaneous apoptosis in only 11/44 of the B-CLL samples, had no effect in 19/44, while it significantly increased leukemic cell survival in 14/44. Taken together, these findings suggest that an aberrant expression of TRAIL might contribute to the pathogenesis of B-CLL by promoting the survival in a subset of B-CLL cells. © 2005 Wiley-Liss, Inc. [source]


    FasL/Fas pathway is involved in dengue virus induced apoptosis of the vascular endothelial cells,,

    JOURNAL OF MEDICAL VIROLOGY, Issue 8 2010
    Hongwu Liao
    Abstract The hallmark of the dengue hemorrhagic fever/dengue shock syndrome is hematologic abnormality. The pathogenesis of dengue hemorrhagic fever/dengue shock syndrome remains unknown. Our work showed that the dengue virus serotype-2 induced apoptosis in human umbilical vein endothelial cells. Fas (CD95), Tumor Necrosis Factor receptors, and Tumor Necrosis Factor-related apoptosis-inducing ligand receptors are the most common death receptors, which can induce apoptosis. Compared with the untreated human umbilical vein endothelial cells, Fas expression was increased both in the mRNA level and on the surface of infected human umbilical vein endothelial cells. FasL was expressed at similar levels on human umbilical vein endothelial cells over a course of dengue virus serotype-2 infection, but the expression in mRNA level was increased in infected human umbilical vein endothelial cells. It is possible that there is soluble FasL secreted from human umbilical vein endothelial cells in the supernatant. Tumor Necrosis Factor-related apoptosis-inducing ligand receptor 1 and Tumor Necrosis Factor receptors 1,2 were constantly very low, whereas Tumor Necrosis Factor-related apoptosis-inducing ligand receptors 2,4 decreased after dengue virus serotype-2 infection. This result suggested that dengue virus serotype-2 may inhibit Tumor Necrosis Factor-related apoptosis-inducing ligand receptors-induced apoptosis. The apoptotic rates in human umbilical vein endothelial cells were decreased upon the addition of caspase family inhibitors. In addition, activated caspase 8 and caspase 3 were also observed by Western blot following dengue virus serotype-2 infection. Thus, it is shown that the Fas/FasL pathway may participate in dengue virus-induced apoptosis of vascular endothelial cells in vitro. J. Med. Virol. 82:1392,1399, 2010. © 2010 Wiley-Liss, Inc. [source]


    Apoptosis in hepatitis C

    JOURNAL OF VIRAL HEPATITIS, Issue 5 2003
    J. Kountouras
    Summary. The apoptotic process appears to be a host defence mechanism against viral infections and tumourigenesis. However, many viral genomes encode proteins, which repress apoptosis so as to escape from immune attack by the host. Therefore, virus,host interactions may determine viral persistence, extent and severity of liver inflammation and possibly viral hepatocarcinogenesis. Apoptosis of liver cells may play a significant role in the pathogenesis of hepatitis C. Pathomorphologic features of increased apoptosis include shrinkage and fragmentation of nuclei/cytoplasm in piecemeal necrosis areas, acidophilic bodies, and focal cell dropout in the liver lobule. The hepatitis C virus (HCV) core protein exhibits both proapoptotic or antiapoptotic actions. Modulation of apoptosis may involve binding of HCV core protein to the intracellular signal transducing portion of death receptors and displacement of signalling molecules. Apoptosis may occur in the absence of significant transaminase elevation, thereby explaining the lack of correlation between biochemical activity and liver cell histological injury. Monitoring caspase activation might provide a reliable tool to estimate the efficacy of HCV therapy, and might open challenging therapeutic strategies in HCV infection. The antiviral effect of interferon may be mediated through induction of apoptosis. Lastly, administration of the antiapoptotic ursodeoxycholic acid in HCV infection is compatible with the notion that apoptosis may represent a mechanism for viral shedding rather than for viral elimination, thereby raising the concept that inhibition of apoptosis could ameliorate hepatitis C. [source]


    Apoptosis is associated with CD36/fatty acid translocase upregulation in non-alcoholic steatohepatitis

    LIVER INTERNATIONAL, Issue 6 2010
    Lars P. Bechmann
    Abstract Background & aims: Hepatocyte apoptosis is a key event in non-alcoholic steatohepatitis (NASH). We studied the effect of obesity on free fatty acid (FFA) levels, fatty acid transport proteins (FATPs) and on extrinsic and intrinsic activation of apoptosis in the liver. Methods: Liver biopsies were harvested from 52 morbidly obese patients [body mass index (BMI): 53.82±1.41; age: 45±10.50; 15 males/37 females] undergoing bariatric surgery, and were scored for NASH, evaluated for fibrosis, and investigated for intrahepatic expression of FATPs, death receptors and cytosolic apoptosis-related molecules. Findings were correlated with serum FFA levels and the degrees of intrahepatic (terminal dUTP nick end labelling) and systemic (M30) apoptosis. Results: In patients' liver sections, FATPs as well as select parameters of extrinsic and intrinsic apoptosis were found to be upregulated (CD36/FAT: × 11.56; FATP-5: × 1.33; CD95/Fas: × 3.18; NOXA: × 2.79). These findings correlated with significantly elevated serum FFAs (control: 14.72±2.32 mg/dl vs. patients: 23.03±1.24 mg/dl) and M30 levels (control: 83.12±7.46 U/L vs. patients: 212.61±22.16 U/L). We found correlations between FATPs and apoptosis mediators as well as with histological criteria of NASH and fibrosis. Conclusions: Increased FFA and FATPs are associated with extrinsically and intrinsically induced apoptosis, liver damage and fibrosis in obese patients. Thus, FATPs may offer an interesting new approach to understand and potentially intervene NASH pathogenesis. [source]


    Changes in expression of anti-apoptotic protein, cflip, in granulosa cells during follicular atresia in porcine ovaries

    MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2005
    Fuko Matsuda-Minehata
    Follicular selection is performed in mammalian ovaries, as most follicles undergo atresia during follicular development and growth. Follicular regression is indicated to begin with granulosa cell apoptosis. To reveal the molecular mechanisms of the selection, we examined the changes in the levels of cellular-Flice like inhibitory protein (cFLIP) expression in porcine granulosa cells. cFLIP is the homologue of intracellular apoptosis inducer (procaspase-8/Flice), and has two alternative splicing isoforms: cFLIP short form (cFLIPS) and long form (cFLIPL). By competing with caspase-8, cFLIP inhibits apoptosis initiated by death receptors. The changes in the levels of cFLIPS and cFLIPL mRNA and protein expression in granulosa cells were determined by RT-PCR and Western blotting, respectively. cFLIPL mRNA and protein were highly expressed in granulosa cells of healthy follicles and decreased during atresia. cFLIPS mRNA levels in granulosa cells were low and showed no change among the stages of follicular development, and its protein level was extremely low. We examined the changes in the localization of cFLIP mRNAs in pig ovaries by in situ hybridization and found that cFLIPL is abundant in granulosa cells of healthy follicles in comparison with those of atretic follicles. Immunohistochemical analyses demonstrated that the cFLIP protein is highly expressed in the granulosa cell of healthy follicles but weakly expressed in that of atretic follicles. We presumed that cFLIP, especially cFLIPL, plays an anti-apoptotic role in the granulosa cells of healthy follicles of pig ovaries, and that cFLIP could be a major survival factor that determines whether growth or atresia occurs in porcine follicles. © 2005 Wiley-Liss, Inc. [source]


    Apoptosis in amyotrophic lateral sclerosis: a review of the evidence

    NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2001
    S. Sathasivam
    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease primarily affecting the upper and lower motor neurones of the central nervous system. Recently, a lot of interest has been generated by the possibility that a mechanism of programmed cell death, termed apoptosis, is responsible for the motor neurone degeneration in this condition. Apoptosis is regulated through a variety of different pathways which interact and eventually lead to controlled cell death. Apart from genetic regulation, factors involved in the control of apoptosis include death receptors, caspases, Bcl-2 family of oncoproteins, inhibitor of apoptosis proteins (IAPs), inhibitors of IAPs, the p53 tumour suppressor protein and apoptosis-related molecules. The first part of this article will give an overview of the current knowledge of apoptosis. In the second part of this review, we will examine in detail the evidence for and against the contribution of apoptosis in motor neurone cell death in ALS, looking at cellular-, animal- and human post-mortem tissue-based models. In a chronic neurodegenerative disease such as ALS, conclusive evidence of apoptosis is likely to be difficult to detect, given the rapidity of the apoptotic cell death process in relation to the relatively slow time course of the disease. Although a complete picture of motor neurone death in ALS has not been fully elucidated, there is good and compelling evidence that a programmed cell death pathway operates in this disorder. The strongest body of evidence supporting this comes from the findings that, in ALS, changes in the levels of members of the Bcl-2 family of oncoproteins results in a predisposition towards apoptosis, there is increased expression or activation of caspases-1 and -3, and the dying motor neurones in human cases exhibit morphological features reminiscent of apoptosis. Further supporting evidence comes from the detection of apoptosis-related molecules and anti-Fas receptor antibodies in human cases of ALS. However, the role of the p53 protein in cell death in ALS is at present unclear. An understanding of the mechanism of programmed cell death in ALS may provide important clues for areas of potential therapeutic intervention for neuroprotection in this devastating condition. [source]