Home About us Contact | |||
Derivative Spectra (derivative + spectrum)
Selected AbstractsPredicting pasture root density from soil spectral reflectance: field measurementEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2010B. H. KUSUMO This paper reports the development and evaluation of a field technique for in situ measurement of root density using a portable spectroradiometer. The technique was evaluated at two sites in permanent pasture on contrasting soils (an Allophanic and a Fluvial Recent soil) in the Manawatu region, New Zealand. Using a modified soil probe, reflectance spectra (350,2500 nm) were acquired from horizontal surfaces at three depths (15, 30 and 60 mm) of an 80-mm diameter soil core, totalling 108 samples for both soils. After scanning, 3-mm soil slices were taken at each depth for root density measurement and soil carbon (C) and nitrogen (N) analysis. The two soils exhibited a wide range of root densities from 1.53 to 37.03 mg dry root g,1 soil. The average root density in the Fluvial soil (13.21 mg g,1) was twice that in the Allophanic soil (6.88 mg g,1). Calibration models, developed using partial least squares regression (PLSR) of the first derivative spectra and reference data, were able to predict root density on unknown samples using a leave-one-out cross-validation procedure. The root density predictions were more accurate when the samples from the two soil types were separated (rather than grouped) to give sub-populations (n = 54) of spectral data with more similar attributes. A better prediction of root density was achieved in the Allophanic soil (r2 = 0.83, ratio prediction to deviation (RPD ) = 2.44, root mean square error of cross-validation (RMSECV ) = 1.96 mg g ,1) than in the Fluvial soil (r2 = 0.75, RPD = 1.98, RMSECV = 5.11 mg g ,1). It is concluded that pasture root density can be predicted from soil reflectance spectra acquired from field soil cores. Improved PLSR models for predicting field root density can be produced by selecting calibration data from field data sources with similar spectral attributes to the validation set. Root density and soil C content can be predicted independently, which could be particularly useful in studies examining potential rates of soil organic matter change. [source] Application of extended inverse scatter correction to mid-infrared reflectance spectra of soilJOURNAL OF CHEMOMETRICS, Issue 5-7 2005Neal B. Gallagher Abstract Scattering artifacts adversely affect infrared reflectance measurements of powders and soils, and extended inverse scatter correction (EISC) is a flexible method useful for correcting these artifacts. EISC was used to correct mid-infrared reflectance spectra of two different soils coated with dibutyl phosphate and the results were examined using regression analysis. To obtain the correction, EISC fits a measured spectrum to a reference spectrum. However, if measured spectra contain features not included in the reference spectrum the fit can be biased resulting in poor correction. Weighted and robust least squares were used to account for these potential biases. Additionally, the present work demonstrates how analyte-free samples can be used to determine basis functions for an extended mixture model used in the correction. Corrected spectra resulted in partial least squares models that performed at least as well as 2nd derivative spectra and were more interpretable. Copyright © 2006 John Wiley & Sons, Ltd. [source] Development of the second-order derivative UV spectrophotometric method for direct determination of paracetamol in urine intended for biopharmaceutical characterisation of drug productsBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 7 2003Jelena Paroj Abstract Paracetamol is a widely used nonsalicylate analgesic and antipyretic drug. The existing methods for the determination of paracetamol in biological fluids are mainly HPLC techniques, although there are some reported methods based on spectrophotometric determinations. However, all these methods involve some extraction or derivatisation procedures. In the present study the UV spectra of investigated samples were recorded over the wavelength range 220,400 nm (, step 0.21 nm; scan speed 60 nm/min) and second-order derivative spectra were calculated. Second-order derivative spectra of different blank urine samples displayed the presence of a zero-crossing point at 245,247 nm defined as ,zc. The zero-order absorption spectra of paracetamol in water displays maximum absorbance at 243 nm, while in second derivative spectra, a minimum peak at 246 nm was observed. Therefore, the application of zero-crossing technique to the second-derivative UV absorption spectrum should be useful for the determination of paracetamol using 2D,zc. The proposed method enables determination of total paracetamol in urine directly and simply by reading the 2D,zc of the diluted samples. The obtained results were in good accordance with published data on cumulative urinary excretion after per oral administration of paracetamol obtained applying different spectrophotometric methods of determination. It could be useful for biopharmaceutical characterisation of drug products (monitoring of the levels of paracetamol in urine in bioavailability testing, for the evaluation of in vitro,in vivo correlation and screening of different formulations during drug product development). Copyright © 2003 John Wiley & Sons, Ltd. [source] Analysis of human tear fluid by Fourier transform infrared spectroscopyBIOPOLYMERS, Issue 1 2005Yasushi Nagase Abstract The purpose of this research is to find some useful spectroscopic factors in human tear fluid contents to monitor diurnal changes of the physicochemical ocular conditions noninvasively. All tear fluid samples were collected with glass microcapillary tubes from both eyes of three donors and analyzed by Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR,ATR). We measured the peak intensities at 2852, 1735, 1546, and 1242 cm,1, and the peak intensity ratios among those peaks in the second derivative spectra. We found significant diurnal and individual variations in those peak intensities for tear fluid obtained from right and left eyes. Among these variations, we observed significant changes in tear samples between right and left eyes. In this case the peak intensity ratio between 1242 (phosphate ester) and 2852 cm,1 (fatty acid methylene) of right eye tear fluid was increased in the afternoon (1600 to 1900 h), while that of left eye tear fluid did not change significantly. In the ratio between 1242 (phosphate ester) and 1546 cm,1 (amide II), the difference was not observed between both eyes. We conclude that the difference in diurnal variations of biochemical constituents between right and left eye tear fluids could be monitored noninvasively and nondestructively by FTIR technique and this method could be useful in the future for tear diagnoses.© 2005 Wiley Periodicals, Inc. Biopolymers 79: 18,27, 2005 This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |