Dehydrogenase Inhibitor (dehydrogenase + inhibitor)

Distribution by Scientific Domains

Kinds of Dehydrogenase Inhibitor

  • alcohol dehydrogenase inhibitor


  • Selected Abstracts


    Reduced metabolites mediate neuroprotective effects of progesterone in the adult rat hippocampus.

    DEVELOPMENTAL NEUROBIOLOGY, Issue 9 2006
    The synthetic progestin medroxyprogesterone acetate (Provera) is not neuroprotective
    Abstract The ovarian hormone progesterone is neuroprotective in different experimental models of neurodegeneration. In the nervous system, progesterone is metabolized to 5,-dihydroprogesterone (DHP) by the enzyme 5,-reductase. DHP is subsequently reduced to 3,,5,-tetrahydroprogesterone (THP) by a reversible reaction catalyzed by the enzyme 3,-hydroxysteroid dehydrogenase. In this study we have analyzed whether progesterone metabolism is involved in the neuroprotective effect of the hormone in the hilus of the hippocampus of ovariectomized rats injected with kainic acid, an experimental model of excitotoxic cell death. Progesterone increased the levels of DHP and THP in plasma and hippocampus and prevented kainic-acid-induced neuronal loss. In contrast to progesterone, the synthetic progestin medroxyprogesterone acetate (MPA, Provera) did not increase DHP and THP levels and did not prevent kainic-acid-induced neuronal loss. The administration of the 5,-reductase inhibitor finasteride prevented the increase in the levels of DHP and THP in plasma and hippocampus as a result of progesterone administration and abolished the neuroprotective effect of progesterone. Both DHP and THP were neuroprotective against kainic acid. However, the administration of indomethacin, a 3,-hydroxysteroid dehydrogenase inhibitor, blocked the neuroprotective effect of both DHP and THP, suggesting that both metabolites are necessary for the neuroprotective effect of progesterone. In conclusion, our findings indicate that progesterone is neuroprotective against kainic acid excitotoxicity in vivo while the synthetic progestin MPA is not and suggest that progesterone metabolism to its reduced derivatives DHP and THP is necessary for the neuroprotective effect of the hormone. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


    Merimepodib, pegylated interferon, and ribavirin in genotype 1 chronic hepatitis C pegylated interferon and ribavirin nonresponders,,

    HEPATOLOGY, Issue 6 2009
    Vinod K. Rustgi
    Merimepodib (MMPD) is an orally administered, inosine monophosphate dehydrogenase inhibitor that has shown antiviral activity in nonresponders with chronic hepatitis C (CHC) when combined with pegylated interferon alfa 2a (Peg-IFN-alfa-2a) and ribavirin (RBV). We conducted a randomized, double-blind, multicenter, phase 2b study to evaluate the antiviral activity, safety, and tolerability of MMPD in combination with Peg-IFN-alfa-2a and RBV in patients with genotype 1 CHC who were nonresponders to prior therapy with Peg-IFN and RBV. Patients received 50 mg MMPD, 100 mg MMPD, or placebo every 12 hours, in addition to Peg-IFN-alfa-2a and RBV, for 24 weeks. Patients with a 2-log or more decrease from baseline or undetectable hepatitis C virus (HCV) RNA levels at week 24 were then eligible to continue Peg-IFN-alfa-2a and RBV for a further 24 weeks, followed by 24 weeks of follow-up. The primary efficacy endpoint was sustained virological response (SVR) rate at week 72 in all randomized patients who received at least one dose of study drug and had a history of nonresponse to standard therapy. A total of 354 patients were randomized to treatment (117 to placebo; 119 to 50 mg MMPD; 118 to 100 mg MMPD), and 286 completed the core study. The proportion of patients who achieved SVR was similar among the treatment groups: 6% (6/107) for 50 mg MMPD, 4% (5/112) for 100 mg MMPD, and 5% (5/104) for placebo (P = 0.8431). Adverse-event profiles for the MMPD combination groups were similar to that for Peg-IFN-alfa and RBV alone. Nausea, arthralgia, cough, dyspnea, neutropenia, and anemia were more common in patients taking MMPD. Conclusion: The addition of MMPD to Peg-IFN-alfa-2a and RBV combination therapy did not increase the proportion of nonresponder patients with genotype 1 CHC achieving an SVR. (HEPATOLOGY 2009.) [source]


    The effects of HCV infection and management on health-related quality of life,

    HEPATOLOGY, Issue 3 2007
    Zobair Younossi
    Infection with HCV leads to an array of symptoms that compromise health-related quality of life (HRQL). Chronic hepatitis C is treated primarily with pegylated interferon (peg-IFN) and an inosine 5, monophosphate dehydrogenase inhibitor, ribavirin (RBV), with the goal of achieving a sustained virologic response (SVR). SVR reduces the rate of hepatic fibrosis and other disease-related complications and, in turn, increases HRQL. Although combination therapy with peg-IFN and RBV produces SVRs in more than 50% of treated patients, it is associated with side effects that can reduce short-term HRQL, can lead to dose reductions and discontinuations, and may impair treatment response. Fatigue and depression are common symptoms of chronic HCV infection that may also be caused by IFN-based therapy. Hemolytic anemia and IFN-mediated bone marrow suppression are well-known consequences of IFN/RBV therapy, often resulting in dose reductions or discontinuations, and have the potential to affect SVR rates. Management of these symptoms is vital to successful outcomes and generally relies on therapy that is adjunctive to the primary treatment of the viral infection itself. Several new drugs with the potential to increase SVR rates without compromising HRQL are in development. Conclusion: The relationship of chronic HCV infection, treatment, and HRQL is complex. Successful treatment of chronic hepatitis C requires an understanding of the intricacies of this relationship and appropriate management of treatment-related symptoms. (HEPATOLOGY 2007;45:806,816.) [source]


    Immunosuppression using the mTOR inhibition mechanism affects replacement of rat liver with transplanted cells,

    HEPATOLOGY, Issue 2 2006
    Yao-Ming Wu
    Successful grafting of tissues or cells from mismatched donors requires systemic immunosuppression. It is yet to be determined whether immunosuppressive manipulations perturb transplanted cell engraftment or proliferation. We used syngeneic and allogeneic cell transplantation assays based on F344 recipient rats lacking dipeptidyl peptidase IV enzyme activity to identify transplanted hepatocytes. Immunosuppressive drugs used were tacrolimus (a calcineurin inhibitor) and its synergistic partners, rapamycin (a regulator of the mammalian target of rapamycin [mTOR]) and mycophenolate mofetil (an inosine monophosphate dehydrogenase inhibitor). First, suitable drug doses capable of inducing long-term survival of allografted hepatocytes were identified. In pharmacologically effective doses, rapamycin enhanced cell engraftment by downregulating hepatic expression of selected inflammatory cytokines but profoundly impaired proliferation of transplanted cells, which was necessary for liver repopulation. In contrast, tacrolimus and/or mycophenolate mofetil perturbed neither transplanted cell engraftment nor their proliferation. Therefore, mTOR-dependent extracellular and intracellular mechanisms affected liver replacement with transplanted cells. In conclusion, insights into the biological effects of specific drugs on transplanted cells are critical in identifying suitable immunosuppressive strategies for cell therapy. (HEPATOLOGY 2006;44:410,419.) [source]


    Intensity and Duration of Chronic Ethanol Exposure Is Critical for Subsequent Escalation of Voluntary Ethanol Drinking in Mice

    ALCOHOLISM, Issue 11 2009
    William C. Griffin III
    Background:, Excessive alcohol drinking continues to be an important health problem. Recent studies from our laboratory and others have demonstrated that animal models of ethanol dependence and relapse can contribute to understanding factors that contribute to excessive drinking. In this study, we tested the hypothesis that the amount and duration of ethanol exposure is critical for promoting the escalation in drinking by mice given access to ethanol in a limited access paradigm. Methods:, We used several methods of chronic intermittent ethanol exposure in male C57BL/6J mice that would vary in the amount and duration of exposure to ethanol as indicated by blood ethanol concentrations (BEC). After establishing baseline drinking in the mice using a 2 hours, 2 bottle choice drinking paradigm, each study involved alternating between periods of ethanol exposure and periods of limited access to ethanol (1 cycle) for a total of 3 cycles. In Study 1, mice were allowed extended access (16 hours) to ethanol for oral consumption or remained in the home cage. In Study 2, the ethanol exposure consisted of intragastric gavage of increasing doses of ethanol or isocaloric sucrose as the control. Study 3 compared intragastric gavage combined with pyrazole, an alcohol dehydrogenase inhibitor, with vapor inhalation of ethanol using procedures known to lead to increased drinking in mice. Finally, Study 4 was a retrospective review of several studies conducted in our laboratory using inhalation procedures. The retrospective review encompassed a range of postvapor chamber BEC values and ethanol intakes that would allow a relationship between increased drinking and BEC to be examined. Results:, Allowing mice to drink for longer periods of time did not cause increased drinking in subsequent limited access sessions. Likewise, gastric intubation of ethanol which produced high BEC (>300 mg/dl) with or without pyrazole did not increase drinking. Only the vapor inhalation procedure, which was associated with sustained BEC above 175 mg/dl for the entire exposure period resulted in increased drinking. The retrospective study provided further evidence that sustained BEC levels above 175 mg/dl was critical to the escalation in drinking. Conclusions:, We found that the intensity (amount) and duration of ethanol exposure, indexed by BEC, is critical to produce increased drinking in mice. Specifically, BEC must regularly exceed 175 mg/dl for the escalation in drinking to occur. Future studies will examine neurobiological adaptations that may underlie the increased drinking behavior caused by chronic intermittent ethanol exposure. [source]


    Acute Alcohol Intoxication Increases REDD1 in Skeletal Muscle

    ALCOHOLISM, Issue 5 2008
    Charles H. Lang
    Background:, The mechanism by which acute alcohol (EtOH) intoxication decreases basal muscle protein synthesis via inhibition of the Ser/Thr kinase mammalian target of rapamycin (mTOR) is poorly defined. In this regard, mTOR activity is impaired after over expression of the regulatory protein REDD1. Hence, the present study assessed the ability of REDD1 as a potential mediator of the EtOH-induced decrease in muscle protein synthesis. Methods:, The effect of acute EtOH intoxication on REDD1 mRNA and protein was determined in striated muscle of rats and mouse myocytes using an RNase protection assay and Western blotting, respectively. Other components of the mTOR signaling pathway were also assessed by immunoblotting. For comparison, REDD1 mRNA/protein was also determined in the muscle of rats chronically fed an alcohol-containing diet for 14 weeks. Results:, Intraperitoneal (IP) injection of EtOH increased gastrocnemius REDD1 mRNA in a dose- and time-dependent manner, and these changes were associated with reciprocal decreases in the phosphorylation of 4E-BP1, which is a surrogate marker for mTOR activity and protein synthesis. No change in REDD1 mRNA was detected in the slow-twitch soleus muscle or heart. Acute EtOH produced comparable increases in muscle REDD1 protein. The EtOH-induced increase in gastrocnemius REDD1 was independent of the route of EtOH administration (oral vs. IP), the nutritional state (fed vs. fasted), gender, and age of the rat. The nonmetabolizable alcohol tert -butanol increased REDD1 and the EtOH-induced increase in REDD1 was not prevented by pretreatment with the alcohol dehydrogenase inhibitor 4-methylpyrazole. In contrast, REDD1 mRNA and protein were not increased in the isolated hindlimb perfused with EtOH or in C2C12 myocytes incubated with EtOH, under conditions previously reported to decrease protein synthesis. Pretreatment with the glucocorticoid receptor antagonist RU486 failed to prevent the EtOH-induced increase in REDD1. Finally, the EtOH-induced increase in REDD1 was not associated with altered formation of the TSC1,TSC2 complex or the phosphorylation of TSC2 which is down stream in the REDD1 stress response pathway. In contradistinction to the changes observed with acute EtOH intoxication, REDD1 mRNA/protein was not changed in gastrocnemius from chronic alcohol-fed rats despite the reduction in 4E-BP1 phosphorylation. Conclusions:, These data indicate that in fast-twitch skeletal muscle (i) REDD1 mRNA/protein is increased in vivo by acute EtOH intoxication but not in response to chronic alcohol feeding, (ii) elevated REDD1 in response to acute EtOH appears due to the production of an unknown secondary mediator which is not corticosterone, and (iii) the EtOH-induced decrease in protein synthesis can be dissociated from a change in REDD1 suggesting that the induction of this protein is not responsible for the rapid decrease in protein synthesis after acute EtOH administration or for the development of alcoholic myopathy in rats fed an alcohol-containing diet. [source]


    Effect of green tea and (-)-epigallocatechin gallate on ethanol-induced toxicity in HepG2 cells

    PHYTOTHERAPY RESEARCH, Issue 5 2008
    Sang Il Lee
    Abstract Despite the continuing reports supporting the hepatoprotective effects of green tea against ethanol intoxication, there remain controversies regarding the active compound(s) and molecular mechanism. These issues were addressed in the present study using cultured HepG2 cells exposed to a lethal dose of ethanol. Gamma-glutamyl transferase (GGT) was chosen as a marker of ethanol toxicity because it is widely used in clinics. When the cells were treated with ethanol at various concentrations, there was a dose-dependent increase of GGT activity in the culture media and loss of cell viability. Pretreatment of the cells with green tea extract attenuated the changes significantly. Among the green tea constituents, (-)-epigallocatechin gallate (EGCG) attenuated the ethanol cytotoxicity effectively, whereas l -theanine and caffeine had no effects. The ethanol cytotoxicity was also attenuated by alcohol dehydrogenase inhibitor 4-methyl pyrazol and GGT inhibitor acivicin as well as by thiol modulators such as S -adenosyl- l -methionine, N -acetyl- l -cysteine and glutathione. EGCG failed to prevent the intracellular glutathione loss caused by ethanol, but it appeared to be a strong GGT inhibitor. Therefore the cytoprotective effects of green tea could be attributed to the inhibition of GGT activity by EGCG. This study suggests that GGT inhibitors including EGCG may provide a novel strategy for attenuating ethanol-induced liver damage. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Effect of selected alcohol dehydrogenase inhibitors on human hepatic lactate dehydrogenase activity , an in vitro study

    JOURNAL OF APPLIED TOXICOLOGY, Issue 6 2005
    Jaroslaw Dudka
    Abstract Metabolic acidosis severely complicates methanol and ethylene glycol intoxications. Acidosis is caused by acid metabolites and can be intensified by lactate elevation. Lactate concentration depends on the NADH2/NAD ratio. Lactate dehydrogenase (LDH, E.C.1.1.1.27.) supplies more lactate when the level of NADH2 is elevated. The aim of the study was to evaluate the effect of alcohol dehydrogenase (ADH) inhibitors and substrates: cimetidine, EDTA, 4-methylpyrazole (4-MP), Ukrain and ethanol on LDH activity. The activity of LDH was determined spectrophotometrically in human liver homogenates incubated with cimetidine, EDTA, 4-MP and Ukrain at concentrations of 2 × 10,6, 10,5 and 5 × 10,5m as well as ethanol at concentrations of 12.50, 25.00, 50.00 mm. The LDH activity was significantly increased by 10,5 and 5 × 10,5m concentrations of cimetidine and 4-MP, and by all concentrations of ethanol. The most effective change of LDH activity of about 26% (P < 0.01) was observed at the highest concentration of ethanol. Ukrain inhibited LDH activity at both concentrations, i.e. 10,5 and 5 × 10,5m (P < 0.05). However, EDTA did not significantly influence LDH activity. The data showed that ethanol and 4-MP, the main antidotes in methanol or ethylene glycol poisoning, may increase liver LDH activity , an undesirable effect during the therapy of patients intoxicated with these alcohols. On the other hand, the decrease of LDH activity in the presence of Ukrain is a promising finding but definitely requires further investigation. Copyright © 2005 John Wiley & Sons, Ltd. [source]


    Therapeutic manipulation of glucocorticoid metabolism in cardiovascular disease

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2009
    Patrick W.F. Hadoke
    The therapeutic potential for manipulation of glucocorticoid metabolism in cardiovascular disease was revolutionized by the recognition that access of glucocorticoids to their receptors is regulated in a tissue-specific manner by the isozymes of 11,-hydroxysteroid dehydrogenase. Selective inhibitors of 11,-hydroxysteroid dehydrogenase type 1 have been shown recently to ameliorate cardiovascular risk factors and inhibit the development of atherosclerosis. This article addresses the possibility that inhibition of 11,-hydroxsteroid dehydrogenase type 1 activity in cells of the cardiovascular system contributes to this beneficial action. The link between glucocorticoids and cardiovascular disease is complex as glucocorticoid excess is linked with increased cardiovascular events but glucocorticoid administration can reduce atherogenesis and restenosis in animal models. There is considerable evidence that glucocorticoids can interact directly with cells of the cardiovascular system to alter their function and structure and the inflammatory response to injury. These actions may be regulated by glucocorticoid and/or mineralocorticoid receptors but are also dependent on the 11,-hydroxysteroid dehydrogenases which may be expressed in cardiac, vascular (endothelial, smooth muscle) and inflammatory (macrophages, neutrophils) cells. The activity of 11,-hydroxysteroid dehydrogenases in these cells is dependent upon differentiation state, the action of pro-inflammaotory cytokines and the influence of endogenous inhibitors (oxysterols, bile acids). Further investigations are required to clarify the link between glucocorticoid excess and cardiovascular events and to determine the mechanism through which glucocorticoid treatment inhibits atherosclerosis/restenosis. This will provide greater insights into the potential benefit of selective 11,-hydroxysteroid dehydrogenase inhibitors in treatment of cardiovascular disease. [source]