Home About us Contact | |||
Dehydrogenase
Kinds of Dehydrogenase Terms modified by Dehydrogenase Selected AbstractsSPECIFIC DETECTION OF AMANITA PHALLOIDES MYCELIUM AND SPORES BY PCR AMPLIFICATION OF THE GPD (GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE) GENE FRAGMENTJOURNAL OF FOOD BIOCHEMISTRY, Issue 3 2000OWSKI, ROMAN KOT ABSTRACT Oligonucleotide primers designed to flank a 635 bp fragment of the gene encoding glyceraldehyde-3-phosphate dehydrogenase (gpd) from Araanita muscaria were used to amplify the corresponding gpd fragment from Amanita phalloides. The A. phalloides PCR product was cloned, sequenced and found to be 70 - 77% similar to the known basidiomycetes gpd genes within the exon part and 25 - 52% within the intron part. Based on these data, species-specific amplification was achieved using a pair of oligonucleotide primers complementary to the A. phalloides gpd intron sequences. These primers allowed the amplification of the corresponding gpd fragment from the A. phalloides but not from various other basidiomycetes, ascomycetes and human matrices. PCR amplification of the A. phalloides DNA gave the predicted PCR product of 284 bp. The created PCR system is an efficient tool for the specific, rapid and sensitive detection of A. phalloides mycelium and spores. [source] ROLE OF GLUTAMATE DEHYDROGENASE AND GLUTAMINE SYNTHETASE IN CHLORELLA VULGARIS DURING ASSIMILATION OF AMMONIUM WHEN JOINTLY IMMOBILIZED WITH THE MICROALGAE-GROWTH-PROMOTING BACTERIUM AZOSPIRILLUM BRASILENSE,JOURNAL OF PHYCOLOGY, Issue 5 2008Luz E. De-Bashan Enzymatic activities of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) participating in the nitrogen metabolism and related ammonium absorption were assayed after the microalga Chlorella vulgaris Beij. was jointly immobilized with the microalgae-growth-promoting bacterium Azospirillum brasilense. At initial concentrations of 3, 6, and 10 mg · L,1 NH4+, joint immobilization enhances growth of C. vulgaris but does not affect ammonium absorption capacity of the microalga. However, at 8 mg · L,1 NH4+, joint immobilization enhanced ammonium absorption by the microalga without affecting the growth of the microalgal population. Correlations between absorption of ammonium per cell and per culture showed direct (negative and positive) linear correlations between these parameters and microalga populations at 3, 6, and 10 mg · L,1 NH4+, but not at 8 mg · L,1 NH4+, where the highest absorption of ammonium occurred. In all cultures, immobilized and jointly immobilized, having the four initial ammonium concentrations, enzymatic activities of Chlorella are affected by A. brasilense. Regardless of the initial concentration of ammonium, GS activity in C. vulgaris was always higher when jointly immobilized and determined on a per-cell basis. When jointly immobilized, only at an initial concentration of 8 mg · L,1 NH4+ was GDH activity per cell higher. [source] Behavior of PQQ Glucose Dehydrogenase on Prussian Blue-Modified Carbon ElectrodeELECTROANALYSIS, Issue 13 2008Valdas Laurinavicius Abstract Glucose sensitive biosensor containing pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase immobilized on Prussian blue (PB)-modified graphite electrode was designed. Properties of the biosensor were investigated in the cathodic and anodic response detection regions. It was shown, that anodic response of the biosensor is sum of two signals: direct electron transport from reduced PQQ to the electrode and by formation of the PQQ-oxygen-PB-carbon ternary complex. Cathodic response of the biosensor is based on the oxidation of the reduced PQQ by PB-oxygen-PB complex. Electrochemical regeneration of the enzyme does not produce free hydrogen peroxide. [source] Towards a Large-Scale Asymmetric Reduction Process with Isolated Enzymes: Expression of an (S)-Alcohol Dehydrogenase in E.,coli and Studies on the Synthetic Potential of this BiocatalystADVANCED SYNTHESIS & CATALYSIS (PREVIOUSLY: JOURNAL FUER PRAKTISCHE CHEMIE), Issue 3 2003Werner Hummel No abstract is available for this article. [source] N -Nitrosomelatonin outcompetes S -Nitrosocysteine in inhibiting Glyceraldehyde 3-Phosphate Dehydrogenase: first evidence that N -Nitrosomelatonin can modify protein functionJOURNAL OF PINEAL RESEARCH, Issue 3 2008Michael Kirsch Abstract:, Low-molecular-weight S -nitrosothiols (RSNOs) are well known for their capability to transnitrosate cysteine residues of enzymes thereby altering their catalytic activity. It is unknown, however, whether N -nitrosomelatonin (NOMela) which is highly effective in transnitrosating low-molecular-weight thiols (RSHs) can also alter protein function. In the present study, we report on such a capability with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a target enzyme. Reaction of NOMela with GAPDH resulted in an increase of RSNOs at the expense of RSHs. Somewhat surprisingly, NOMela was about 10-fold more effective than S -nitrosocysteine in inhibiting GAPDH. Vitamin C and glutathione increased the NOMela-dependent inhibition of the enzyme by accelerating the intermediacy of nitroxyl which is also highly effective in nitrosating RSHs. The occurrence of this intermediate during the NOMela,vitamin C reaction was verified by using Mn(III)-tetrakis(1-methyl-4-pyridyl)porphorin pentachloride as nitroxyl scavenger. The NOMela-dependent inactivation of GAPDH was so effective that this reaction can be used to quantify NOMela with high sensitivity. [source] Establishment of Retama sphaerocarpa L. seedlings on a degraded semiarid soil as influenced by mycorrhizal inoculation and sewage-sludge amendmentJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 5 2004María del Mar Alguacil Abstract A field experiment was carried out to evaluate the effectiveness of mycorrhizal inoculation with three arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge), and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and the addition of composted sewage sludge (SS) with respect to the establishment of Retama sphaerocarpa L. seedlings, in a semiarid Mediterranean area. Associated changes in soil chemical (nutrient content and labile carbon fractions), biochemical (enzyme activities), and physical (aggregate stability) parameters were observed. Six months after planting, both the addition of composted SS and the mycorrhizal-inoculation treatments had increased total N content, available-P content, and aggregate stability of the soil. Values of water-soluble C and water-soluble carbohydrates were increased only in the mycorrhizal-inoculation treatments. Rhizosphere soil from the mycorrhizal-inoculation treatments had significantly higher enzyme activities (dehydrogenase, protease-BAA, acid phosphatase, and ,-glucosidase) than the control soil. In the short-term, mycorrhizal inoculation with AM fungi was the most effective treatment for enhancement of shoot biomass, particularly with G. mosseae (about 146% higher with respect to control plants). The addition of the composted SS alone was sufficient to restore soil structural stability but was not effective with respect to improving the performance of R. sphaerocarpa plants. Besiedlung eines degradierten semiariden Bodens mit Retama sphaerocarpa L.-Setzlingen, beeinflusst durch Mykorrhiza-Inokulation und Klärschlammzugabe Ein Feldversuch wurde durchgeführt, um den Effekt einer Inokulation mit drei arbuskulären Mykorrhizapilzen (AM) (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) und Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) einerseits und der Zugabe von kompostiertem Klärschlamm (SS) andererseits auf die Besiedlung von Retama sphaerocarpa L.-Setzlingen in einem mediterranen semiariden Gebiet zu untersuchen. Es wurden chemischer Nährstoffgehalt, labile C-Fraktion, biochemische Enzymaktivitäten und physikalische Bodenparameter (Aggregatstabilität) untersucht. Sechs Monate nach der Pflanzung erbrachten beide Behandlungen , die Zugabe von kompostiertem Klärschlamm und die Mykorrhiza-Inokulation , Steigerungen des Gesamtstickstoff-Gehaltes, des verfügbaren Phosphor-Gehaltes sowie der Aggregatstabilität des Bodens. Wasserlöslicher Kohlenstoff und wasserlösliche Kohlenhydrate waren nur nach Mykorrhiza-Inokulation erhöht. Boden aus der Rhizosphäre, der mit Mykorrhizapilzen inokuliert wurde, zeigte signifikant höhere Enzymaktivitäten (Dehydrogenase, Protease-BAA, saure Phosphatase und ,-Glucosidase) als der Kontrollboden. In der kurzen Periode war die Inokulation mit AM-Pilzen die effektivste Behandlung bei der Bildung von Sprossbiomasse, speziell bei G. mosseae (eine um über 146,% höhere Biomasse im Vergleich zu den Kontrollpflanzen). Die Zugabe von kompostiertem Klärschlamm allein war ausreichend, die Stabilität der Bodenstruktur wiederherzustellen, aber sie war nicht effektiv hinsichtlich der Entwicklung der R. sphaerocarpa -Pflanzen. [source] Aldehyde Dehydrogenase 2 Gene Targeting Mouse Lacking Enzyme Activity Shows High Acetaldehyde Level in Blood, Brain, and Liver after Ethanol GavagesALCOHOLISM, Issue 11 2005Toyohi Isse Abstract: Background: Previously, we created an aldehyde dehydrogenase 2 gene transgenic (Aldh2,/,) mouse as an aldehyde dehydrogenase (ALDH) 2 inactive human model and demonstrated low alcohol preference. In addition, after a free-choice drinking test, no difference in the acetaldehyde level was observed between the Aldh2,/, and wild type (Aldh2+/+) mice. The actual amounts of free-choice drinking were so low that it is uncertain whether these levels are pharmacologically and/or behaviorally relevant in either strain. To elucidate this uncertainty, we compared the ethanol and acetaldehyde concentration in the blood, brain, and liver between the Aldh2,/, and Aldh2+/+ mice after ethanol gavages at the same dose and time. Method: We measured differences in the ethanol and acetaldehyde levels between the Aldh2,/, and Aldh2+/+ mice by headspace gas chromatography-mass spectrometry (GC-MS) after ethanol gavages at the same dose and time. Results: Significantly higher blood acetaldehyde concentrations were found in the Aldh2,/, mice than in the Aldh2+/+ mice 1 hr after the administration of ethanol gavages at doses of 0.5, 1.0, 2.0, and 5.0 g/kg. The blood acetaldehyde concentrations in the two strains were 2.4 vs. 0.5, 17.8 vs. 1.9, 108.3 vs. 4.3, and 247.2 vs. 14.0 (,M), respectively. In contrast, no significant difference was observed in the blood ethanol concentrations between the Aldh2+/+ and Aldh2,/, mice. The aldehyde dehydrogenase 2 enzyme metabolized 94% of the acetaldehyde produced from the ethanol as calculated from the area under the curve (AUC) of acetaldehyde when ethanol was administered at a dose of 5.0 g/kg. Conclusions: These data indicate that mouse ALDH2 is a major enzyme for acetaldehyde metabolism, and the Aldh2,/, mice have significantly high acetaldehyde levels after ethanol gavages. [source] Peroxisome Proliferator-Activated Receptors (PPAR) and the Mitochondrial Aldehyde Dehydrogenase (ALDH2) Promoter In Vitro and In VivoALCOHOLISM, Issue 7 2001David W. Crabb Background : The aldehyde dehydrogenase 2 (ALDH2) promoter contains a nuclear receptor response element (NRRE) that represents an overlapping direct repeat-1 (DR-1) and -5 (DR-5) element. Because DR-1 elements are preferred binding sites for peroxisome proliferator-activated receptors (PPARs), we tested the hypothesis that PPARs regulate ALDH2 expression. Methods: We examined the ability of PPAR isoforms to bind to the ALDH2 NRRE in electrophoretic mobility shift assays, their ability to activate the transcription of promoter-reporter constructs containing this NRRE, the effect of PPAR ligands on ALDH2 expression in liver, and the role of the PPAR, on the expression of ALDH2 by using PPAR,-null mice. Results: In vitro translated PPARs bound the ALDH NRRE with high affinity. Mutation of the NRRE indicated that binding was mediated by the DR-1 element. Cotransfection of PPAR expression plasmids showed that PPAR, had no effect on expression of heterologous promoter constructs containing the NRRE. PPAR, slightly induced expression, whereas PPAR, repressed basal activity of the promoter and blocked induction by hepatocyte nuclear factor 4. Treatment of rats with the PPAR ligand clofibrate repressed expression of ALDH2 in rats fed either stock rodent chow or a low-protein diet. Consistent with the transfection data, expression of ALDH2 protein was not different in PPAR,-null mice. Treatment of the mice with the PPAR, agonist WY14643 slightly decreased the level of ALDH2 protein in both wild-type and PPAR,-null mice, suggesting that the effect of WY14643 was not mediated by the receptor. Conclusions: These data indicate that ALDH2 is not part of the battery of lipid metabolizing enzymes and proteins regulated by PPAR, [source] Pyrene Excimer Fluorescence of Yeast Alcohol Dehydrogenase: A Sensitive Probe to Investigate Ligand Binding and Unfolding Pathway of the EnzymePHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2006Manas Kumar Santra ABSTRACT The cysteine residues of yeast alcohol dehydrogenase (YADH) were covalently modified by N-(1-pyrenyl) maleimide (PM). A maximum of 3.4 cysteines per YADH monomer could be modified by PM. The secondary structure of PM-YADH was found to be similar to that of the native YADH using far-UV circular dichroism. The covalent modification of YADH by PM inhibited the enzymatic activity indicating that the active site of the enzyme was altered. PM-YADH displayed maximum excimer fluorescence at an incorporation ratio of 2.6 mol of PM per monomeric subunit of YADH. Nucleotide adenine dinucleotide (NAD) divalent zinc and ethanol reduced the excimer fluorescence of PM-YADH indicating that these agents induce conformational changes in the enzyme. Guani-dinium hydrochloride (GdnHCl)-induced unfolding of YADH was analyzed using tryptophan fluorescence, pyrene excimer fluorescence and enzymatic activity. The unfolding of YADH was found to occur in a stepwise manner. The loss of enzymatic activity preceded the global unfolding of the protein. Further, changes in tryptophan fluorescence with increasing GdnHCl suggested that YADH was completely unfolded by 2.5 M GdnHCl. Interestingly, residual structures of YADH were detected even in the presence of 5 M GdnHCl using the excimer fluorescence of PM-YADH. [source] Deactivation of Formate Dehydrogenase (FDH) in Solution and at Gas-Liquid InterfacesBIOTECHNOLOGY PROGRESS, Issue 6 2005Andreas S. Bommarius Enzymes, increasingly important in the synthesis of fine chemicals and pharmaceutical intermediates, are often insufficiently stable under reacting conditions. We have investigated the stability, in homogeneous aqueous solution and at gas-liquid interfaces, of formate dehydrogenase (FDH), important for cofactor regeneration, from Candida boidinii and overexpressed in E. coli. When exposed to mechanical stress, residual activity, [E]t/[E]0, and residual protein were found to scale proportionally with gas-liquid surface area in the bubble column, verifying a surface-driven process, and with time and total throughput in a gear pump, but did not seem to be influenced much by shear in a Couette viscometer. All FDH variants are deactivated by chaotropes but not kosmotropes: the first-order deactivation constant kd correlates well with the Jones-Dole coefficient B but not well with the surface tension increment ,, of various concentrated ammonium salt solutions. This finding might provide guidance for focusing the search for quantitative theories of Hofmeister effects. [source] Enzymatic Redox Cofactor Regeneration in Organic Media: Functionalization and Application of Glycerol Dehydrogenase and Soluble Transhydrogenase in Reverse MicellesBIOTECHNOLOGY PROGRESS, Issue 4 2005Hirofumi Ichinose An enzymatic system for the regeneration of redox cofactors NADH and NADPH was investigated in nanostructural reverse micelles using bacterial glycerol dehydrogenase (GLD) and soluble transhydrogenase (STH). Catalytic conversion of NAD+ to NADH was realized in the sodium dioctylsulfosuccinate (AOT)/isooctane reverse micellar system harboring GLD and a sacrificial substrate, glycerol. The initial rate of NADH regeneration was enhanced by exogenous addition of ammonium sulfate into the reverse micelles, suggesting that NH4+ acts as a monovalent cationic activator. STH was successfully entrapped in the AOT/isooctane reverse micelles as well as GLD and was revealed to be capable of catalyzing the stoichiometric hydrogen transfer reaction between NADP+ and NADPH in reverse micelles. These results indicate that GLD and STH have potential for use in redox cofactor recycling in reverse micelles, which allows the use of catalytic quantities of NAD(P)H in organic media. [source] A Single Point Mutation Reverses the Enantiopreference of Thermoanaerobacter ethanolicus Secondary Alcohol DehydrogenaseCHEMCATCHEM, Issue 1 2009The asymmetric reduction of benzylic and heteroaryl ketones to the corresponding (R)-alcohols using I86A Thermoanaerobacter ethanolicus alcohol dehydrogenase (I86A TeSADH) is described. This single amino acid mutation not only makes the active site of I86A TeSADH able to accommodate more sterically demanding substituents than those accommodated by wild-type TeSADH, but it also reverses the substrate stereospecificity of TeSADH. [source] Cinnamic Acid Esters as Potent Inhibitors of Fungal 17,-Hydroxysteroid Dehydrogenase , A Model Enzyme of the Short-Chain Dehydrogenase/Reductase SuperfamilyCHEMINFORM, Issue 46 2004Stanislav Gobec Abstract For Abstract see ChemInform Abstract in Full Text. [source] Analysis of Classical and Quantum Paths for Deprotonation of Methylamine by Methylamine DehydrogenaseCHEMPHYSCHEM, Issue 12 2007Kara E. Ranaghan Abstract The hydrogen-transfer reaction catalysed by methylamine dehydrogenase (MADH) with methylamine (MA) as substrate is a good model system for studies of proton tunnelling in enzyme reactions,an area of great current interest,for which atomistic simulations will be vital. Here, we present a detailed analysis of the key deprotonation step of the MADH/MA reaction and compare the results with experimental observations. Moreover, we compare this reaction with the related aromatic amine dehydrogenase (AADH) reaction with tryptamine, recently studied by us, and identify possible causes for the differences observed in the measured kinetic isotope effects (KIEs) of the two systems. We have used combined quantum mechanics/molecular mechanics (QM/MM) techniques in molecular dynamics simulations and variational transition state theory with multidimensional tunnelling calculations averaged over an ensemble of paths. The results reveal important mechanistic complexity. We calculate activation barriers and KIEs for the two possible proton transfers identified,to either of the carboxylate oxygen atoms of the catalytic base (Asp428,),and analyse the contributions of quantum effects. The activation barriers and tunnelling contributions for the two possible proton transfers are similar and lead to a phenomenological activation free energy of 16.5±0.9 kcal,mol,1 for transfer to either oxygen (PM3-CHARMM calculations applying PM3-SRP specific reaction parameters), in good agreement with the experimental value of 14.4 kcal,mol,1. In contrast, for the AADH system, transfer to the equivalent OD1 was found to be preferred. The structures of the enzyme complexes during reaction are analysed in detail. The hydrogen bond of Thr474,(MADH)/Thr172,(AADH) to the catalytic carboxylate group and the nonconserved active site residue Tyr471,(MADH)/Phe169,(AADH) are identified as important factors in determining the preferred oxygen acceptor. The protein environment has a significant effect on the reaction energetics and hence on tunnelling contributions and KIEs. These environmental effects, and the related clearly different preferences for the two carboxylate oxygen atoms (with different KIEs) in MADH/MA and AADH/tryptamine, are possible causes of the differences observed in the KIEs between these two important enzyme reactions. [source] Effect of Ionic Liquids on Catalytic Characteristics of Horse Liver Alcohol DehydrogenaseCHINESE JOURNAL OF CHEMISTRY, Issue 11 2006Xian-Ai Shi Abstract The catalytic characteristics of horse liver alcohol dehydrogenase (HLADH) in the systems involving ionic liquids (ILs) (BMIm·Cl, BMIm·Br, BMIm·PF6, BMIm·BF4 BMIm·OTf and EMIm·Cl) were examined. HLADH displayed higher oxidation activity towards ethanol in the systems containing BMIm·Cl, BMIm·Br, EMIm·Cl or BMIm·PF6 with proper content than that in the IL-free buffer. An excessive amount of these ILs in the reaction systems resulted in an obvious decline in enzymatic activity. BMIm·BF4 and BMIm·OTf of any content investigated could considerably inhibit the enzyme. The anions of ILs showed significant effect on the activity, kinetic parameters and activation energy of HLADH-mediated ethanol oxidation. Additionally, BMIm·Cl, BMIm·Br, EMIm·Cl and BMIm·PF6 boosted markedly the thermostability of HLADH, while the enzyme was less thermostable in BMIm·BF4 or BMIm·OTf-containing systems. The associated conformational changes in HLADH caused by ILs were examined by UV technique. [source] Regulation of oocyte maturation in fishDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2008Yoshitaka Nagahama A period of oocyte growth is followed by a process called oocyte maturation (the resumption of meiosis) which occurs prior to ovulation and is a prerequisite for successful fertilization. Our studies using fish models have revealed that oocyte maturation is a three-step induction process involving gonadotropin (LH), maturation-inducing hormone (MIH), and maturation-promoting factor (MPF). LH acts on the ovarian follicle layer to produce MIH (17,, 20,-dihydroxy-4-pregnen-3-one, 17,, 20,-DP, in most fishes). The interaction of ovarian thecal and granulosa cell layers (two-cell type model), is required for the synthesis of 17,,20,-DP. The dramatic increase in the capacity of postvitellogenic follicles to produce 17,,20,-DP in response to LH is correlated with decreases in P450c17 (P450c17-I) and P450 aromatase (oP450arom) mRNA and increases in the novel form of P450c17 (P450c17-II) and 20,-hydroxysteroid dehydrogenase (20,-HSD) mRNA. Transcription factors such as Ad4BP/SF-1, Foxl2, and CREB may be involved in the regulation of expression of these steroidogenic enzymes. A distinct family of G-protein-coupled membrane-bound MIH receptors has been shown to mediate non-genomic actions of 17,, 20,-DP. The MIH signal induces the de novo synthesis of cyclin B from the stored mRNA, which activates a preexisting 35 kDa cdc2 kinase via phosphorylation of its threonine 161 by cyclin-dependent kinase activating kinase, thus producing the 34 kDa active cdc2 (active MPF). Upon egg activation, MPF is inactivated by degradation of cyclin B. This process is initiated by the 26S proteasome through the first cut in its NH2 terminus at lysine 57. [source] Candidate genes and the behavioral phenotype in 22q11.2 deletion syndromeDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 1 2008Sarah E. Prasad Abstract There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk for the development of schizophrenia, with only a greater risk conferred by being the child of two parents with schizophrenia or the monozygotic co-twin of an affected individual. Both linkage and association studies of people with schizophrenia have implicated several susceptibility genes, of which three are in the 22q11.2 region; catechol- o -methyltransferase (COMT), proline dehydrogenase (PRODH), and Gnb1L. In addition, variation in Gnb1L is associated with the presence of psychosis in males with 22q11.2DS. In mouse models of 22q11.2DS, haploinsufficiency of Tbx1 and Gnb1L is associated with reduced prepulse inhibition, a schizophrenia endophenotype. The study of 22q11.2DS provides an attractive model to increase our understanding of the development and pathogenesis of schizophrenia and other psychiatric disorders in 22q11.2DS and in wider population. © 2008 Wiley-Liss, Inc. Dev Disabil Res Rev 2008;14:26,34. [source] Role for retinoid signaling in left,right asymmetric digestive organ morphogenesisDEVELOPMENTAL DYNAMICS, Issue 8 2006Kristen Lipscomb Abstract The looping events that establish left,right asymmetries in the vertebrate gut tube are poorly understood. Retinoic acid signaling is known to impact left,right development in multiple embryonic contexts, although its role in asymmetric digestive organ morphogenesis is unknown. Here, we show that the genes for retinaldehyde dehydrogenase (RALDH2) and a retinoic acid hydroxylase (CYP26A1) are expressed in complementary patterns in the Xenopus gut during looping. A late-stage chemical genetic assessment reveals that agonists and antagonists of retinoid signaling generate abnormal gut looping topologies, digestive organ heterotaxias, and intestinal malrotations. Accessory organ deformities commonly associated with intestinal malrotation in humans, such as annular pancreas, pancreas divisum, and extrahepatic biliary tree malformations, are also induced by distinct retinoid receptor agonists. Thus, late-stage retinoic acid signaling is likely to play a critical role in asymmetric gut tube morphogenesis and may underlie the etiology of several clinically relevant defects in the digestive system. Developmental Dynamics 235:2266,2275, 2006. © 2006 Wiley-Liss, Inc. [source] Maternal uniparental isodisomy is responsible for serious molybdenum cofactor deficiencyDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 9 2010HAKAN GÜMÜ Molybdenum cofactor (MoCo) deficiency is a rare autosomal recessive inherited metabolic disorder resulting in the combined deficiency of aldehyde oxidase, xanthine dehydrogenase, and sulfite oxidase. We report a male infant with MoCo deficiency whose clinical findings consisted of microcephaly, intractable seizures soon after birth, feeding difficulties, and developmental delay. Sequencing of MOCS1, MOCS2, and GEPH genes, and single nucleotide polymorphism genotyping array analysis showed, to our knowledge, unusual inheritance of MoCo deficiency/maternal uniparental isodisomy for the first time in the literature. At 10 months of age, he now has microcephaly and developmental delay, and his seizures are controlled with phenobarbital, clonozepam, and vigabatrin therapy. [source] Decreased activities of mitochondrial respiratory chain complexes in non-mitochondrial respiratory chain diseasesDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 2 2006Joannie Hui MBBS The aim of this study was to illustrate the difficulties in establishing a diagnosis of mitochondrial respiratory chain (MRC) disorders based on clinical grounds in combination with intermediate activities of the MRC enzyme complexes. We reviewed retrospectively all medical and laboratory records of patients initially considered likely to have MRC disorders on clinical grounds, and subsequently diagnosed with other disorders (n=20; 11 males, 9 females). Data were retrieved from hospital records, referral letters, and results of enzymatic analysis at a reference laboratory. Clinical symptoms included developmental delay, epilepsy, hypotonia, movement disorder, spastic quadriplegia, tetany, microcephaly, visual problems, carpopedal spasms, dysmorphism, hearing loss, muscle weakness and rhabdomyolysis, and fulminant hepatitis. Blood and cerebrospinal fluid lactate levels were elevated in 13/20 and 9/20 respectively. One or more MRC complex activities (expressed as ratios relative to citrate synthase and/or complex II activity) were less than 50% of control mean activity in 11/20 patients (including patients with deficiencies of pyruvate dehydrogenase complex, pantothenate kinase, holocarboxylase synthetase, long-chain hydroxy acyl-CoA dehydrogenase, molybdenum co-factor, and neonatal haemochromatosis). One patient had a pattern suggestive of mitochondrial proliferation. We conclude that intermediate results of MRC enzymes should be interpreted with caution and clinicians should be actively looking for other underlying diagnoses. [source] Pyruvate dehydrogenase deficiency presenting as dystonia in childhoodDEVELOPMENTAL MEDICINE & CHILD NEUROLOGY, Issue 10 2004R A Head MA Two individuals with pyruvate dehydrogenase (PDH) deficiency due to missense mutations in the gene for the E1, subunit (PDHA1) presented during childhood with dystonia. The first patient, a male, presented at age 4 years with dystonia affecting the lower limbs, which responded to treatment with combined carbidopa and levodopa. The second patient, a female, was first investigated at age 6 years because of a dystonic gait disorder. In both patients, the main clue to the biochemical diagnosis was a raised concentration of lactate in the cerebrospinal fluid. PDH activity was significantly reduced in cultured fibroblasts in both cases. Dystonia is a previously unrecognized major manifestation of PDH deficiency and is of particular interest as the mutations in the PDHA1 gene in these patients have both been identified previously in individuals with typical presentations of the condition. [source] Reduced metabolites mediate neuroprotective effects of progesterone in the adult rat hippocampus.DEVELOPMENTAL NEUROBIOLOGY, Issue 9 2006The synthetic progestin medroxyprogesterone acetate (Provera) is not neuroprotective Abstract The ovarian hormone progesterone is neuroprotective in different experimental models of neurodegeneration. In the nervous system, progesterone is metabolized to 5,-dihydroprogesterone (DHP) by the enzyme 5,-reductase. DHP is subsequently reduced to 3,,5,-tetrahydroprogesterone (THP) by a reversible reaction catalyzed by the enzyme 3,-hydroxysteroid dehydrogenase. In this study we have analyzed whether progesterone metabolism is involved in the neuroprotective effect of the hormone in the hilus of the hippocampus of ovariectomized rats injected with kainic acid, an experimental model of excitotoxic cell death. Progesterone increased the levels of DHP and THP in plasma and hippocampus and prevented kainic-acid-induced neuronal loss. In contrast to progesterone, the synthetic progestin medroxyprogesterone acetate (MPA, Provera) did not increase DHP and THP levels and did not prevent kainic-acid-induced neuronal loss. The administration of the 5,-reductase inhibitor finasteride prevented the increase in the levels of DHP and THP in plasma and hippocampus as a result of progesterone administration and abolished the neuroprotective effect of progesterone. Both DHP and THP were neuroprotective against kainic acid. However, the administration of indomethacin, a 3,-hydroxysteroid dehydrogenase inhibitor, blocked the neuroprotective effect of both DHP and THP, suggesting that both metabolites are necessary for the neuroprotective effect of progesterone. In conclusion, our findings indicate that progesterone is neuroprotective against kainic acid excitotoxicity in vivo while the synthetic progestin MPA is not and suggest that progesterone metabolism to its reduced derivatives DHP and THP is necessary for the neuroprotective effect of the hormone. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Effects of dietary fatty acids on insulin sensitivity and secretionDIABETES OBESITY & METABOLISM, Issue 6 2004Melania Manco Globalization and global market have contributed to increased consumption of high-fat, energy-dense diets, particularly rich in saturated fatty acids( SFAs). Polyunsaturated fatty acids (PUFAs) regulate fuel partitioning within the cells by inducing their own oxidation through the reduction of lipogenic gene expression and the enhancement of the expression of those genes controlling lipid oxidation and thermogenesis. Moreover, PUFAs prevent insulin resistance by increasing membrane fluidity and GLUT4 transport. In contrast, SFAs are stored in non-adipocyte cells as triglycerides (TG) leading to cellular damage as a sequence of their lipotoxicity. Triglyceride accumulation in skeletal muscle cells (IMTG) derives from increased FA uptake coupled with deficient FA oxidation. High levels of circulating FAs enhance the expression of FA translocase the FA transport proteins within the myocites. The biochemical mechanisms responsible for lower fatty acid oxidation involve reduced carnitine palmitoyl transferase (CPT) activity, as a likely consequence of increased intracellular concentrations of malonyl-CoA; reduced glycogen synthase activity; and impairment of insulin signalling and glucose transport. The depletion of IMTG depots is strictly associated with an improvement of insulin sensitivity, via a reduced acetyl-CoA carboxylase (ACC) mRNA expression and an increased GLUT4 expression and pyruvate dehydrogenase (PDH) activity. In pancreatic islets, TG accumulation causes impairment of insulin secretion. In rat models, ,-cell dysfunction is related to increased triacylglycerol content in islets, increased production of nitric oxide, ceramide synthesis and ,-cell apoptosis. The decreased insulin gene promoter activity and binding of the pancreas-duodenum homeobox-1 (PDX-1) transcription factor to the insulin gene seem to mediate TG effect in islets. In humans, acute and prolonged effects of FAs on glucose-stimulated insulin secretion have been widely investigated as well as the effect of high-fat diets on insulin sensitivity and secretion and on the development of type 2 diabetes. [source] Insulin mimetic effects of macrocyclic binuclear oxovanadium complexes on streptozotocin-induced experimental diabetes in ratsDIABETES OBESITY & METABOLISM, Issue 6 2003B. Ramachandran Aim:, The vanadium complexes so far tested for their insulin mimetic effects are either mono- or binuclear and contain only acyclic ligands. The leaching or hydrolysis of vanadyl ions from these complexes is much easier, and hence they elicit side effects. In the present study, a new binuclear macrocyclic oxovanadium complex was synthesized, and its efficacy was studied on streptozotocin (STZ)-induced diabetic rats over a period of 30 days. Methods:, The insulin mimetic effect of the complex was tested on the blood sugar level in the STZ-diabetic rats and on the activities of the carbohydrate-metabolizing enzymes present in the liver. Results:, Administration of vanadium complex to STZ-induced diabetic rats decreased blood glucose levels from hyperglycaemic to normoglycaemic when compared to diabetic rats. The activity of carbohydrate-metabolizing enzymes such as hexokinase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen content were increased to near normal in vanadium complex-administered diabetic rats. The biochemical studies such as assay of blood urea and glutamate oxaloacetate transaminases revealed that the complex is not toxic to the system. Conclusion:, The nontoxic nature of this complex may be due to the presence of the vanadyl ions in an intact macrocyclic form. Further, the vanadyl ions present in the macrocyclic binuclear oxovanadium complex are very close to each other, and this may enhance the insulin mimetic activity by synergic effect. [source] Protective effect of CPUX1, a progesterone, on hydrogen peroxide-induced oxidative damage in PC12 cells,DRUG DEVELOPMENT RESEARCH, Issue 8 2008Bian-sheng Ji Abstract The protective effect of CPUX1, a novel progesterone analog, on hydrogen peroxide (H2O2)-induced oxidative damage was investigated in rat pheochromocytoma (PC12) cells. Following the exposure of PC12 cells to H2O2, there was a reduction in cell survival and activities of superoxide dismutase (SOD) and mitochondrial membrane potential (MMP) accompanied by increased levels of lactate dehydrogenase (LDH) release, malondialdehyde (MDA) production, and intracellular reactive oxygen species (ROS) and intracellular [Ca2+]i levels. Preincubation of cells with CPUX1 prior to H2O2 exposure attenuated all these changes mentioned and had a protective effect against H2O2 -induced toxicity in PC12 cells, indicating that the compound may have potential therapeutic benefit for CNS disorders influenced by oxidative damage. Drug Dev Res 69: 2008 ©2008 Wiley-Liss, Inc. [source] Hydrophobic derivatives of 5-(hydroxymethyl)isophthalic acid that selectively induce apoptosis in leukemia cells but not in fibroblasts,,DRUG DEVELOPMENT RESEARCH, Issue 4 2008Anna Galkin Abstract New apoptosis modulating agents are widely sought, because failure in regulation of apoptosis is associated with many diseases. In this study, we have evaluated apoptosis inducing the potential of ten new hydrophobic derivatives of 5-(hydroxymethyl)isophthalic acid. Cancerous leukemia cells (HL-60) and non-malignant fibroblasts (Swiss 3T3) were incubated with test compounds for 24,h and morphologically evaluated. The changes in mitochondrial membrane potential (,,m) and caspase-3 activity were used to confirm the results and to study early induction of apoptosis. Cytotoxicity was determined using the lactate dehydrogenase (LDH) assay and mutagenicity with miniaturized Ames-test. The most potent selective apoptosis inducers were compounds 1c and 1,h having IC50 values of 41 and 23,µM, respectively, in leukemia cells (HL-60) while effects in fibroblasts (Swiss 3T3) were insignificant. Reduction of ,,m and increase in caspase-3 activity were observed already during the first 2,hr in the HL-60 cells treated with compounds 1,c and 1,h. Neither of the compounds was cytotoxic or mutagenic. The results indicate that compounds 1,c and 1,h are selective apoptosis inducers and should be studied further for possible use in cancer therapy. Drug Dev. Res. 69: 185,195, 2008. © 2008 Wiley-Liss, Inc. [source] Thaliporphine protects ischemic and ischemic-reperfused rat hearts via an NO-dependent mechanismDRUG DEVELOPMENT RESEARCH, Issue 3 2001Li-Man Hung Abstract In ischemia or ischemia-reperfusion (I/R), nitric oxide (NO) can potentially exert several beneficial effects. Thaliporphine, a natural alkaloid with Ca2+ channel-activating and Na+/K+ channel-blocking activities, increased NO levels and exerted cardioprotective action in ischemic or I/R rats. The role of NO in the cardioprotective actions of thaliporphine was assessed. The severity of rhythm disturbances and mortality in anesthetized rats with either coronary artery occlusion for 30 min, or 5 min followed by 30-min reperfusion, were monitored and compared in thaliporphine- vs. placebo-treated groups. Thaliporphine treatment significantly increased NO and decreased lactate dehydrogenase (LDH) levels in the blood during the end period of ischemia or I/R. These changes in NO and LDH levels by thaliporphine were associated with a reduction in the incidence and duration of ventricular tachycardia (VT) and ventricular fibrillation (VF) during ischemic or I/R period. The mortality of animals was also completely prevented by 1 × 10,8 moles/kg of thaliporphine. In animals subjected to 4 h of left coronary artery occlusion, 1 × 10,7 moles/kg of thaliporphine dramatic reduced cardiac infarct zone from 46 ± 6% to 7.1 ± 1.9%. Inhibition of NO synthesis with 3.7 × 10,6 moles/kg of N, -nitro-L-arginine methyl ester (L-NAME) abolished the beneficial effects of thaliporphine during 30 min or 4 h myocardial ischemia. However, the antiarrhythmic activity and mortality reduction efficacy of thaliporphine during reperfusion after 5 min of ischemia was only partially antagonized by L-NAME. These results showed that thaliporphine efficiently exerted the cardioprotections either in acute or prolonged coronary artery occlusion or occlusion-reperfusion situations. The fact that thaliporphine induced cardioprotective effects were abrogated by L-NAME indicates that NO is an important mediator for the cardioprotective effects of thaliporphine in acute or prolonged ischemia, whereas antioxidant activities may contribute to the protection of I/R injury. Drug Dev. Res. 52:446,453, 2001. © 2001 Wiley-Liss, Inc. [source] Is natural selection a plausible explanation for the distribution of Idh- 1 alleles in the cricket Allonemobius socius?ECOLOGICAL ENTOMOLOGY, Issue 1 2006Diana L. Huestis Abstract., 1.,Allozyme alleles in natural populations have been proposed as either neutral markers of genetic diversity or the product of natural selection on enzyme function, as amino acid substitutions that change electrophoretic mobility may also alter enzyme performance. To address these possibilities, researchers have used both correlative analyses and empirical studies. 2.,Here, geographically structured variation of the enzyme isocitrate dehydrogenase (Idh- 1) in the striped ground cricket Allonemobius socius Scudder (Orthoptera: Gryllidae) is examined. The distributions of Idh- 1 alleles appear to be related to environmental gradients, as allele frequencies showed significant relationships with mean annual temperature and precipitation. Specifically, the slowest mobility allele was more frequent at colder temperatures, while the converse occurred for the fastest mobility allele. 3.,An exploratory experiment was performed to examine fitness effects of possessing different Idh- 1 alleles at two temperatures to test the hypothesis that the geographic structure of this locus may reflect environmental adaptation. Results showed that a significant interaction between temperature and Idh- 1 genotype affected the number of eggs laid, with success of homozygous individuals matching environmental expectations. 4.,The above results show that (1) variation in the frequency of Idh- 1 alleles is significantly related to environmental gradients in the eastern U.S.A. and (2) alternative alleles of Idh- 1 appear to influence the egg-laying ability of individuals differently depending on environmental temperature. Together, these results suggest that natural selection is a plausible mechanism underlying the distribution of Idh- 1 alleles in this species, although more detailed studies are needed. [source] Effect of Enzyme and Cofactor Immobilization on the Response of Ethanol Oxidation in Zirconium Phosphate Modified BiosensorsELECTROANALYSIS, Issue 10 2010Mitk'El Abstract Two different self-contained ethanol amperometric biosensors incorporating layered [Ru(phend)2bpy]2+ -intercalated zirconium phosphate (ZrP) as the mediator as well as yeast -alcohol dehydrogenase (y- ADH) and its cofactor nicotinamide adenine dinucleotide (NAD+) were constructed to improve upon a design previously reported where only this mediator was immobilized in the surface of a modified electrode. In the first biosensor, a [Ru(phend)2bpy]2+ -intercalated ZrP modified carbon paste electrode (CPE) was improved by immobilizing in its surface both y- ADH and NAD+ using quaternized Nafion membrane. In the second biosensor, a glassy carbon electrode was modified with [Ru(phend)2bpy]2+ -intercalated ZrP, y- ADH, and NAD+ using Nafion as the holding matrix. Calibration plots for ethanol sensing were constructed in the presence and absence of ZrP. In the absence of ZrP in the surface of the modified glassy carbon electrode, leaching of ADH was observed as detected by UV-vis spectrophotometry. Ethanol sensing was also tested in the presence and absence of ascorbate to measure the selectivity of the sensor for ethanol. These two ethanol biosensors were compared to a previously reported one where the y -ADH and the NAD+ were in solution, not immobilized. [source] Evaluating Enzyme Cascades for Methanol/Air Biofuel Cells Based on NAD+ -Dependent EnzymesELECTROANALYSIS, Issue 7-8 2010Abstract Previous work by the group has entailed encapsulating enzymes in polymeric micelles at bioelectrode surfaces by utilizing hydrophobically modified Nafion membranes, which are modified in order to eliminate the harsh acidity of Nafion while tailoring the size of the polymer micelles to optimize for the encapsulation of an individual enzyme. This polymer encapsulation has been shown to provide high catalytic activity and enzyme stability. In this study, we employed this encapsulation technique in developing a methanol/air biofuel cell through the combined immobilization of NAD+ -dependent alcohol dehydrogenase (ADH), aldehyde dehydrogenase (AldDH) and formate dehydrogenase (FDH) within a tetrabutylammonium bromide (TBAB) modified Nafion to oxidize methanol to carbon dioxide with poly(methylene green) acting as the NADH electrocatalyst electropolymerized on the surface of the electrode. The methanol biofuel/air cell resulted in a maximum power density of 261±7.6,,W/cm2 and current density of 845±35.5,,A/cm2. This system was characterized for the effects of degree of oxidation, temperature, pH, and concentration of fuel and NAD. [source] |