Home About us Contact | |||
Degradation Products (degradation + products)
Kinds of Degradation Products Selected AbstractsAnalysis of the Stability and Degradation Products of TriptolideJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 1 2000YAN PING MAO Triptolide is the major active ingredient of the Chinese herbal remedy Tripterygium wilfordii Hook F. (TwHF). As triptolide content is used to estimate the potency of preparations of TwHF, assessment of its stability is warranted. The accelerated stability of triptolide was investigated in 5% ethanol solution in a light-protected environment at pH 6.9, within a temperature range of 60,90°C. The observed degradation rate followed first-order kinetics. The degradation rate constant (K25°C) obtained by trending line analysis of Arrhenius plots of triptolide was 1.4125 times 10,4 h,1. The times to degrade 10% (t1/10) and 50% (t1/2) at 25°C were 31 and 204 days, respectively. Stability tests of triptolide in different solvents and different pH conditions (pH 4,10) in a light-protected environment at room temperature demonstrated that basic medium and a hydrophilic solvent were the major factors that accelerated the degradation of triptolide. Triptolide exhibited the fastest degradation rate at pH 10 and the slowest rate at pH 6. In a solvent comparison, triptolide was found to be very stable in chloroform. The stability of triptolide in organic polar solvents tested at both 100% and 90% concentration was greater in ethanol than in methanol than in dimethylsulphoxide. Stability was also greater in a mixture of solvent: pH 6 buffer (9:1) than in 100% solvent alone. An exception was ethyl acetate, which is less polar than the other solvents tested, but permitted more rapid degradation of triptolide. Two of the degradation products of triptolide were isolated and identified by HPLC and mass spectroscopy as triptriolide and triptonide. This suggested that the decomposition of triptolide occurred at the C12 and C13 epoxy group and the C14 hydroxyl. The opening of the C12 and C13 epoxy is an irreversible reaction, but the reaction occurring on the C14 hydroxyl is reversible. These results show that the major degradation pathway of triptolide involves decomposition of the C12 and C13 epoxy group. Since this reaction is very slow at 4°C at pH 6, stability is enhanced under these conditions. [source] Degradation products of a phenylurea herbicide, diuron: Synthesis, ecotoxicity, and biotransformationENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2001Céline Tixier Abstract The degradation products of diuron (photoproducts and metabolites), already described in the literature, were synthesized in order to carry out further investigations. Their ecotoxicity was determined using the standardized Microtox® test, and most of the derivatives presented a nontarget toxicity higher than that of diuron. Therefore, the biotransformation of these compounds was tested with four fungal strains and a bacterial strain, which were known to be efficient for diuron transformation. With the exception of the 3,4-dichlorophenylurea, all the degradation products underwent other transformations with most of the strains tested, but no mineralization was observed. For many of them, the biodegradation compound for which the toxicity was important was 3,4-dichlorophenylurea. This study underlines the importance of knowing the nature of the degradation products, which has to be kept in mind while analyzing natural water samples or soil samples. [source] Changes in water-holding capacity and textural properties of chicken gizzard stored at 4°CANIMAL SCIENCE JOURNAL, Issue 3 2010Yoshito TOMISAKA ABSTRACT The water-holding capacity (WHC), and toughness (shear force) of chicken gizzard were evaluated during postmortem storage for 4.5, 7, 12, 24, 48, 72 and 96 h at 4°C. Degradation of the cytoskeletal proteins desmin, talin and vinculin were monitored by sodium dodecyl sulfate , polyacrylamide gel electrophoresis and Western blotting during the same designated storage period. The WHC of the gizzards decreased significantly from 12 h to 72 h of storage, but by 96 h the WHC was restored to the level measured after storage for 12 h. The shear force value of the gizzards increased rapidly until 12 h and then decreased until 24 h, with a further slight decrease by 48 h. Degradation products of desmin, talin and vinculin appeared at 96 h, 12 h and 48 h postmortem, respectively. The intensity of immunolabeling for desmin, talin and vinculin after storage for 96 h decreased to 51%, 25% and 52% of the initial value. The appearance of desmin degradation products was accompanied by an increase in WHC. This suggests that the postmortem degradation of desmin is involved in the increase of WHC in chicken gizzard during storage at 4°C, and talin and vinculin may be involved. [source] An improved validated ultra high pressure liquid chromatography method for separation of tacrolimus impurities and its tautomersDRUG TESTING AND ANALYSIS, Issue 3 2010Acharya Subasranjan Abstract A selective, specific and sensitive ultra high pressure liquid chromatography (UHPLC) method was developed for determination of tacrolimus degradation products and tautomers in the preparation of pharmaceuticals. The chromatographic separation was performed on Waters ACQUITY UPLC system and BEH C8 column using gradient elution of mobile phase A (90:10 v/v of 0.1% v/v triflouroacetic acid solution and Acetonitrile) and mobile phase B (90:10 v/v acetonitrile and water) at a flow rate of 0.6 mL min,1. Ultraviolet detection was performed at 210 nm. Tacrolimus, tautomers and impurities were chromatographed with a total run time of 25 min. Calibration showed that the response of impurity was a linear function of concentration over the range 0.3,6 µg mL,1 (r2 , 0.999) and the method was validated over this range for precision, intermediate precision, accuracy, linearity and specificity. For precision study, percentage relative standard deviation of each impurity was < 15% (n = 6). The method was found to be precise, accurate, linear and specific. The proposed method was successfully employed for estimation of tacrolimus impurities in pharmaceutical preparations. Copyright © 2010 John Wiley & Sons, Ltd. [source] Cover Picture: Electrophoresis 3'09ELECTROPHORESIS, Issue 3 2009Article first published online: 11 FEB 200 This is a regular issue with an emphasis on "Fundamentals Methodologies and Instrumentation" assembling 11 articles in various research areas on fundamentals, methods development, instrumental design, detection and sensitivity enhancement approaches. The remaining articles are on proteins and proteomics analyses by various electrophoretic approaches. Selected topics of issue 3 are: Capillary Electrophoresis-based detection of Methicillin-resistant Staphylococcus aureus (MRSA CE-based detection of methicillin-resistant Staphylococcus aureus A portable capillary electropherograph equipped with a cross-sampler and a contactless-conductivity detector for the detection of the degradation products of chemical warfare agents in soil extracts Two-dimensional phosphate-affinity gel electrophoresis for the analysis of phosphoprotein isotypes [source] Determination of enantiomeric purity of a novel COX-2 anti-inflammatory drug by capillary electrophoresis using single and dual cyclodextrin systemsELECTROPHORESIS, Issue 9 2003Carlos Pérez-Maseda Abstract E-6087 is the most advanced compound among the cyclooxygenase-2 (COX-2) inhibitor drugs developed in our company. Its activity is mainly associated with the S(,)-enantiomer (E-6232), whereas the R(,)-enantiomer (E-6231) becomes an impurity whose content should be determined. Five main impurities and degradation products of E-6232 have been found (E-6144, E-6024, E-6072, E-6397 and E-6132), and some of them co-elute with the distomer when using a chiral high-performance liquid chromatography (HPLC) method. Consequently, we have optimized the separation of all the impurities from the two enantiomers of E-6087 by capillary electrophoresis (CE), in order to use the method for the enantiomeric purity determination of E-6232. The effect of the methanol (MeOH) content in the background electrolyte (BGE), the sulfobutyl ether-,-cyclodextrin (SBE-,-CD) and heptakis-(2,6-di- O -methyl)-,-cyclodextrin (DM-,-CD) concentration, and the capillary temperature have been studied. Separation of all compounds could be achieved in different systems, either in a single CD-system (with SBE-,-CD) or in a dual CD-system (with DM-,-CD as a neutral CD). By using the dual CD system a limit of detection (LOD) and a limit of quantitation (LOQ) of 0.03% and 0.1% of distomer, respectively, were achieved*. [source] A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonasesENVIRONMENTAL MICROBIOLOGY, Issue 3 2008Kashif Riaz Summary A metagenomic library of 10 121 clones, generated from bacteria inhabiting a pasture soil from France, was screened for the presence of fosmids conferring either N -acylhomoserine lactone (NAHL) synthesis or NAHL degradation ability upon their Escherichia coli host. No clone producing NAHLs was identified whereas one, containing a 31 972 bp insert in fosmid p2H8, allowed NAHL degradation. This led to the cloning and identification of a gene, qlcA, encoding an NAHL-lactonase activity, as judged by lactone-ring closure and HPLC/MS analyses of NAHL degradation products. The qlcA gene efficiently quenched quorum-sensing regulated pathogenic functions when expressed in Pectobacterium carotovorum. The QlcA peptide belongs to the family of zinc-dependent metallohydrolases and appears to be distantly related to other NAHL-lactonases discovered in Agrobacterium, Bacillus, Photorhabdus and Rhizobium. In-silico analysis of the metagenomic insert revealed the occurrence of 20 orf, with a constant GC% and codon usage, suggesting a unique bacterial origin. Nine out of these 20 orf were homologous to genes encoding biosynthesis of arginine; they were clustered with an unusual succession argFJADBCRGH. The fosmid p2H8 is able to complement the argA, argB and argC mutants in E. coli. Phylogenetic analysis showed that 9 orf out of 20 were related to sequences from members of the Acidobacteria, supporting the hypothesis that the analysed insert might be originated from an organism related to this phylum. [source] Toxicity reduction of metal pyrithiones by near ultraviolet irradiationENVIRONMENTAL TOXICOLOGY, Issue 4 2006Hideo Okamura Abstract Zinc pyrithione (ZnPT) or copper pyrithione (CuPT) have been effectively used as ship-antifouling agents, as an alternative to organotin compounds. Because of their instability in light and a lack of suitable analytical procedures, there is little data on their residue levels in environmental matrices. It is possible to investigate the fate of such compounds by toxicity alteration with certain treatments. The purpose of this study was to evaluate the degradation of pyrithiones through toxicity reduction by near ultraviolet (UV-A) irradiation. Metal pyrithiones dissolved in acetonitrile were irradiated with a UV-A lamp for 0, 0.5, 1, and 2 h, and were subjected to UV spectral measurement and toxicity evaluation using both sea urchin and freshwater rotifer bioassays. For the bioassays, photolyzed samples were dissolved in dimethyl sulfoxide after evaporation of the acetonitrile. The changes in UV spectra of photolyzed ZnPT or CuPT showed a time-dependent degradation, and the UV spectra at 2 h irradiation suggested substantial decomposition. Toxicities of ZnPT and CuPT were 12 and 5 ,g/L as 24 h LC50 to the survival of rotifers and 10,6 ng/L and 2.3 ng/L as 27 h EC50 to normal pluteus formation, respectively. By evaporation of the acetonitrile, the EC50 of ZnPT was 2.2 ng/L, which was the same as that of CuPT. The EC50s of ZnPT or CuPT for both species increased with longer irradiation times. Photolyzed ZnPT or CuPT demonstrated substantial degradation in the UV spectra, but possessed marked toxicity, which is probably due to toxic degradation products. One reason why photolyzed CuPT was toxic to rotifers was explained by the high toxicity of copper ions formed by UV-A irradiation. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 305,309, 2006. [source] Impact of five selected xenobiotics on isolated ammonium oxidizers and on nitrifying activated sludgeENVIRONMENTAL TOXICOLOGY, Issue 4 2006S. N. Dokianakis Abstract Sewage treatment plants (STPs) are usual receptors of xenobiotic compounds that have to be cotreated with municipal wastewaters before being discharged to the water environment. The presence of organic contaminants, such as surfactants, polycyclic aromatic hydrocarbons (PAHs), phthalates, and their primary degradation products in the influents of STPs may inhibit irreversibly sensitive biological processes, such as nitrification. The first step of nitrification, i.e., the oxidation of ammonium to nitrite (nitritification), is particularly sensitive. Inhibition of this step under uncontrolled conditions may completely inhibit biological nitrogen removal. The aim of this work was to study the possible inhibitory effect of five selected xenobiotics on (a) a mixed culture of ammonium-oxidizing bacteria isolated from activated sludge and (b) nitrifying activated sludge directly. The xenobiotics that were tested include nonylphenols (NP), nonylphenolethoxylates (NPEO), linear alkylbenzene sulfonates (LAS), di(2-ethylhexyl) phthalate (DEHP), as a representative phthalate ester, and the PAH phenanthrene. Remarkable inhibitory effects for all tested compounds were observed in this study even at xenobiotic concentrations as low as 1 mg/L. The observed inhibition of xenobiotics on nitrifying activated sludge was less pronounced, because of the masking effect exerted by the sludge flocs, but was still significant for many of the tested substances at concentrations up to 10 mg/L. © 2006 Wiley Periodicals, Inc. Environ Toxicol 21: 310,316, 2006. [source] Microbiological evaluation of toxicity of three polycyclic aromatic hydrocarbons and their decomposition products formed by advanced oxidation processesENVIRONMENTAL TOXICOLOGY, Issue 3 2003Teresa Jamroz Abstract The toxicity of benzo[a]pyrene, chrysene, and fluorene and their decomposition products formed by advanced oxidation processes (AOPs) was investigated using biotests with Escherichia coli and Vibrio fischeri. The polycyclic aromatic hydrocarbons (PAHs) were not highly toxic to either bacterial strain; the toxicity of their degradation products depended on the method of chemical processing. Inhibition of more than 27% was observed with products formed by oxidation of the PAHs, by AOP methods without hydrogen peroxide. Toxicity as high as 100% was observed after the combined action of hydrogen peroxide and other oxidizing agents. © 2003 Wiley Periodicals, Inc. Environ Toxicol 18: 187,191, 2003 [source] Environmental factors affecting the levels of legacy pesticides in the airshed of Delaware and Chesapeake Bays, USAENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010Anubha Goel Abstract Organochlorine insecticides and their degradation products contribute to toxicity in Chesapeake Bay, USA, sediments and affect the reproductive health of avian species in the region; however, little is known of atmospheric sources or temporal trends in concentrations of these chemicals. Weekly air (n,=,265) and daily rain samples (n,=,494) were collected over 2000 to 2003 from three locations in the Delmarva Peninsula, USA. Pesticides were consistently present in the gas phase with infrequent detection in the particle phase. Hexachlorocyclohexanes (HCHs) and cis - and trans -chlordane were detected most frequently (95,100%), and cis - and trans -nonachlor, oxychlordane, heptachlor, heptachlor epoxide, dieldrin, and 1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethenyl]benzene (4,4,-DDE) were also detected frequently. The highest mean air concentrations were for dieldrin (60,84,pg/m3), ,-HCH (37,83,pg/m3), and 4,4,-DDE (16,80,pg/m3). Multiple regression analyses of air concentrations with temperature and wind conditions using modified Clausius-Clapeyron equations explained only 30 to 60% of the variability in concentration for most chemicals. Comparison of the air concentrations and enthalpy of air,surface exchange values at the three sites indicate sources of chlordanes and ,-HCH sources are primarily from long-range transport. However, examination of chlordane isomer ratios indicates some local and regional contributions, and ,-HCH, 4,4,-DDE, dieldrin, heptachlor, heptachlor epoxide, and oxychlordane also have local or regional sources, possibly from contaminated soils. Median rain sample volumes of 1 to 3 L led to infrequent detections in rain; however, average measured concentrations were 2 to 10 times higher than in the Great Lakes. Dissipation half-lives in air were well below 10 years for all chemicals and below published values for the Great Lakes except dieldrin, which did not decline during the sample period. Environ. Toxicol. Chem. 2010;29:1893,1906. © 2010 SETAC [source] Modeling the environmental fate of perfluorooctanoate and its precursors from global fluorotelomer acrylate polymer useENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2008Rosalie van Zelm Abstract The environment contains various direct and indirect sources of perfluorooctanoic acid (PFOA). The present study uses a dynamic multispecies environmental fate model to analyze the potential formation of perfluorooctanoate (PFO), the anion of PFOA, in the environment from fluorotelomer acrylate polymer (FTacrylate) emitted to landfills and wastewater, residual fluorotelomer alcohol (8:2 FTOH) in FTacrylate, and residual PFOA in FTacrylate. A multispecies version of the SimpleBox model, which is capable of determining the fate of a chemical and its degradation products, was developed for this purpose. An uncertainty analysis on the chemical-specific input parameters was performed to examine for uncertainty in modeled concentrations. In 2005, residual 8:2 FTOH made up 80% of the total contribution of FTacrylate use to PFO concentrations in global oceans, and residual PFOA in FTacrylate contributed 15% to PFO concentrations from FTacrylate use in global oceans. After hundreds of years, however, the main source of PFO from total historical FTacrylate production is predicted to be FTacrylate degrading in soil following land application of sludge from sewage treatment plants, followed by FTacrylate still present in landfills. Uncertainty in modeled PFO concentrations was up to a factor of 3.3. Current FTacrylate use contributes less than 1% of the PFO in seawater, but because direct PFOA emission sources are reduced and PFOA continues to be formed from FTacrylate in soil and in landfills, this fraction grows over time. [source] Agricultural pesticides and selected degradation products in five tidal regions and the main stem of Chesapeake Bay, USAENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2007Laura L. McConnell Abstract Nutrients, sediment, and toxics from water sources and the surrounding airshed are major problems contributing to poor water quality in many regions of the Chesapeake Bay, an important estuary located in the mid-Atlantic region of the United States. During the early spring of 2000, surface water samples were collected for pesticide analysis from 18 stations spanning the Chesapeake Bay. In a separate effort from July to September of 2004, 61 stations within several tidal regions were characterized with respect to 21 pesticides and 11 of their degradation products. Three regions were located on the agricultural Delmarva Peninsula: The Chester, Nanticoke, and Pocomoke Rivers. Two regions were located on the more urban western shore: The Rhode and South Rivers and the Lower Mobjack Bay, including the Back and Poquoson Rivers. In both studies, herbicides and their degradation products were the most frequently detected chemicals. In 2000, atrazine and metolachlor were found at all 18 stations. In 2004, the highest parent herbicide concentrations were found in the upstream region of Chester River. The highest concentration for any analyte in these studies was for the ethane sulfonic acid of metolachlor (MESA) at 2,900 ng/L in the Nanticoke River. The degradation product MESA also had the greatest concentration of any analyte in the Pocomoke River (2,100 ng/L) and in the Chester River (1,200 ng/L). In the agricultural tributaries, herbicide degradation product concentrations were more strongly correlated with salinity than the parent herbicides. In the two nonagricultural watersheds on the western shore, no gradient in herbicide concentrations was observed, indicating the pesticide source to these areas was water from the Bay main stem. [source] Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products, and two nitramine explosivesENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2007Judith Neuwoehner Abstract The soil and groundwater of former ordnance plants and their dumping sites have often been highly contaminated with the explosive 2,4,6-trinitrotoluene (2,4,6-TNT) leading to a potential hazard for humans and the environment. Further hazards can arise from metabolites of transformation, by-products of the manufacturing process, or incomplete combustion. This work examines the toxicity of polar nitro compounds relative to their parent compound 2,4,6-TNT using four different ecotoxicological bioassays (algae growth inhibition test, daphnids immobilization test, luminescence inhibition test, and cell growth inhibition test), three genotoxicological assays (umu test, NM2009 test, and SOS Chromotest), and the Ames fluctuation test for detection of mutagenicity. For this study, substances typical for certain steps of degradation/transformation of 2,4,6-TNT were chosen for investigation. This work determines that the parent compounds 2,4,6-TNT and 1,3,5-trinitrobenzene are the most toxic substances followed by 3,5-dinitrophenol, 3,5-dinitroaniline and 4-amino-2-nitrotoluene. Less toxic are the direct degradation products of 2,4,6-TNT like 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-amino-4,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene. A weak toxic potential was observed for 2,4,6-trinitrobenzoic acid, 2,4-diamino-6-nitrotoluene, 2,4-dinitrotoluene-5-sulfonic acid, and 2,6-diamino-4-nitrotoluene. Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and hexahydro-1,3,5-trinitro-1,3,5-triazine show no hint of acute toxicity. Based on the results of this study, we recommend expanding future monitoring programs of not only the parent substances but also potential metabolites based on conditions at the contaminated sites and to use bioassays as tools for estimating the toxicological potential directly by testing environmental samples. Site-specific protocols should be developed. If hazardous substances are found in relevant concentrations, action should be taken to prevent potential risks for humans and the environment. Analyses can then be used to prioritise reliable estimates of risk. [source] Toxicity and fate of two munitions constituents in spiked sediment exposures with the marine amphipod Eohaustorius estuariusENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2005Gunther Rosen Abstract The lethal toxicity of the explosive compounds 14C-labeled 2,4,6-trinitrotoluene (TNT) and nonradiolabeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the estuarine amphipod Eohaustorius estuarius was investigated in 10-d spiked sediment exposures. The 10-d median lethal concentration (LC50) was determined using the sum molar initial concentration of TNT, ami-nodinitrotoluenes (ADNTs), and diaminonitrotoluenes (DANTs), as determined by high-performance liquid chromatography (HPLC), and collectively referred to as HPLC-TNT*. Despite expectations of higher toxicity in sandy sediment (Yaquina Bay [YB], OR, USA) compared to relatively fine-grained sediment (San Diego Bay [SDB], CA, USA), LC50 values were similar: 159 and 125 ,mol/kg, for YB and SDB sediments, respectively. When expressed as the sum of TNT and all its degradation products (14C-TNT*), LC50s were approximately two times the corresponding LC50s determined by HPLC. The HPLC-TNT* fraction likely corresponds to the most bioavailable and toxic transformation products. The concentrations of 14C-TNT* in tissues were substantially higher than those for HPLC-TNT*, suggesting that compounds other than TNT and its major aminated transformation products were prevalent. Critical body residues were similar for exposures to SDB (11.7 ,mol/kg) and YB sediments (39.4 ,mol/kg), despite marked differences in the nature of compounds available for uptake in the exposure media. The critical body residues for E. estuarius are lower than those reported for other aquatic invertebrates (83,172 ,mol/kg). Unlike observations for TNT, RDX was only loosely associated with SDB sediment, with near complete recovery of the parent compound by chemical analysis. Exposure to RDX did not result in significant mortality even at the highest measured sediment concentration of 10,800 ,mol/kg dry weight, nor tissue concentrations as high as 96 ,mol/kg wet weight. The lack of RDX lethal effects in this study is consistent with results reported for other invertebrate species. [source] Earthworm toxicity during chemical oxidation of diesel-contaminated sandENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2005Kyung-Hee Shin Abstract An ecotoxicity test with Eisenia fetida was performed to monitor the removal of diesel and toxicity variation during the ozonation process. The three-dimensional (3-D) cell test was introduced for the monitoring of the ozonation process, and the removal rate based on total petroleum hydrocarbons (TPHs) mass was about 95% near the ozone inlet ports. This high removal rate might be caused by the low soil organic matter (SOM) content and low water content of sand. The use of a fiber-optic transflection dip probe (FOTDP) demonstrated that more than half of the injected ozone was consumed by reactions with diesel or natural ozone-consuming materials. The earthworm toxicity test using Eisenia fetida demonstrated that diesel concentrations in soil exceeding 10,000 mg/kg caused a dose-dependent weight loss in earthworms and increased mortality. Toxic effects were reduced greatly or eliminated after ozonation, and the degradation products of the ozonation were not toxic to the earthworms at the concentrations tested. One specific result was that the sublethal test on the earthworm might be more sensitive for the evaluation of the quality of contaminated soil, for some samples, which did not result in mortality and produced an adverse effect on weight. [source] Bioluminescence inhibition assays for toxicity screening of wood extractives and biocides in paper mill process watersENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2004Anna Rigol Abstract The risk associated with wood extractives, biocides, and other additives in pulp and paper mill effluents was evaluated by performing a characterization of process waters and effluents in terms of toxicity and chemical analysis. The individual toxicity of 10 resin acids, two unsaturated fatty acids, and three biocides was estimated by measuring the bioluminescence inhibition with a ToxAlert® 100 system. Median effective concentration values (EC50) of 4.3 to 17.9, 1.2 to 1.5, and 0.022 to 0.50 mg/L were obtained, respectively. Mixtures of these three families of compounds showed antagonistic effects. Chemical analysis of process waters was performed by liquid chromatography-and gas chromatography-mass spectrometry. Biocides such as 2-(thiocyanome-thylthio)-benzotiazole (TCMTB) (EC50 = 0.022 mg/L) and 2,2-dibromo-3-nitrilpropionamide (DBNPA) (EC50 = 0.50 mg/L) were the most toxic compounds tested and were detected at concentrations of 16 and 59 ,g/L, respectively, in a closed-circuit recycling paper mill. Process waters from kraft pulp mills, printing paper mills, and packing board paper mills showed the highest concentration of resin acids (up to 400 ,g/L) and accounted for inhibition percentages up to 100%. Detergent degradation products such as nonylphenol (NP) and octylphenol (OP) and the plasticizer bisphenol A (BPA) were also detected in the waters at levels of 0.6 to 10.6, 0.3 to 1.4, and 0.7 to 187 ,g/L, respectively. However, once these waters were biologically treated, the concentration of detected organic compounds diminished and the toxicity decreased in most cases to values of inhibition lower than 20%. [source] Degradation products of a phenylurea herbicide, diuron: Synthesis, ecotoxicity, and biotransformationENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2001Céline Tixier Abstract The degradation products of diuron (photoproducts and metabolites), already described in the literature, were synthesized in order to carry out further investigations. Their ecotoxicity was determined using the standardized Microtox® test, and most of the derivatives presented a nontarget toxicity higher than that of diuron. Therefore, the biotransformation of these compounds was tested with four fungal strains and a bacterial strain, which were known to be efficient for diuron transformation. With the exception of the 3,4-dichlorophenylurea, all the degradation products underwent other transformations with most of the strains tested, but no mineralization was observed. For many of them, the biodegradation compound for which the toxicity was important was 3,4-dichlorophenylurea. This study underlines the importance of knowing the nature of the degradation products, which has to be kept in mind while analyzing natural water samples or soil samples. [source] Pesticide residues in the aquatic environment of banana plantation areas in the North Atlantic Zone of Costa RicaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2000Luisa E. Castillo Abstract A study of pesticide residues in surface waters and sediments was undertaken in the Suerte River Basin, Costa Rica, that drains into the Tortuguero conservation area. Samples were collected in streams, packing plants, and the Suerte River. The most frequently measured compounds in surface water samples were the fungicides thiabendazole, propiconazole, and imazalil; the nematicides terbufos and cadusafos; and the insecticide chlorpyrifos. At the conservation area, propiconazole was detected in 43% of the samples at concentrations ranging from 0.05 to 1.0 ,g/L. In 25% of the samples collected at this site, a nematicide (cadusafos, carbofuran, or ethoprophos) was detected (0.06,6.2 ,g/L). According to this study, most of the insecticide-nematicides analyzed pose a risk for acute or chronic toxicity to aquatic organisms based on the exposure levels and toxicity values from the literature. Ametryn, imazalil, and thiabendazole also exceeded the calculated chronic risk ratio. The most frequently detected compounds in sediments were thiabendazole, chlorpyrifos, imazalil, and propiconazole. The occurrence was higher in the packing plants and streams. Pesticides in waters and sediments of Tortuguero conservation area could pose a threat to this wetland and an additional stress to the endangered species that inhabit this area. More information is needed regarding the distribution and stability of pesticides in the lagoon system as well as of the effects of mixtures of low levels of pesticides and their degradation products on representative species of the Tortuguero ecosystem. Meanwhile, all measures to reduce the emissions of pesticides from the banana plantations and the packing plants should be taken. [source] Distribution of degradation products of alkylphenol ethoxylates near sewage treatment plants in the lower Great Lakes, North AmericaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2000Erin R. Bennett Abstract Degradation of alkylphenol ethoxylate (APEO) surfactants in the environment leads to the formation of relatively hydrophobic compounds such as nonylphenol (NP), octylphenol (OP), nonylphenol monoethoxylate (NP1EO), and nonylphenol diethoxylate (NP2EO) that have been shown to have estrogenic activity. Previous studies have shown that sewage treatment plants (STPs) are point sources for these compounds in the aquatic environment. We collected sediment samples at several sites in the vicinity of STPs in Hamilton Harbour and in the Detroit River to determine the spatial distribution of the degradation products of APEOs. In addition, we deployed semipermeable membrane devices (SPMDs) and caged freshwater mussels (Elliptio complanata) at these locations to determine the distribution of these compounds in the dissolved phase and their potential to bioaccumulate in aquatic organisms. The NP, OP, NP1EO, and NP2EO were found at ,g/g (dry wt.) concentrations in sediments and accumulated to ng/g (wet wt.) concentrations in caged mussels near the STPs. However, in the Detroit River, the concentrations of these compounds declined to near background levels in the sediments, water column (i.e., SPMDs), and biota at stations about 1 km downstream from STPs. At stations in Hamilton Harbour, concentrations of APEO degradation products also declined markedly in sediments and SPMDs located a few hundred meters from the STP. These data indicate that degradation products of APEOs can be accumulated by biota near STPs. However, the environmental distribution of these compounds is localized to areas close to the point of discharge. [source] Characterization of volatile compounds and triacylglycerol profiles of nut oils using SPME-GC-MS and MALDI-TOF-MSEUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 2 2009Stefanie Bail Abstract Several nut oil varieties mainly used as culinary and overall healthy food ingredients were subject of the present study. Headspace solid-phase microextraction combined with gas chromatography-mass spectrometry was employed in order to determine the qualitative composition of volatile compounds. Furthermore, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used in order to assess the profiles and relative composition of the prevalent triacylglycerols (TAG) within the oils. The headspace of the majority of oil samples was dominated by high contents of acetic acid (up to 42%) and hexanal (up to 32%). As nut oils are typically gained by cold-pressing from previously roasted nuts, characteristic pyrazine derivatives as well as degradation products of long-chain fatty acids were detected. TAG analysis of these oils revealed a quite homogeneous composition dominated by components of the C52 and C54 group composed mainly of oleic (18:1), linoleic (18:2), stearic (18:0) and palmitic (16:0) acid residues representing together between 65 and 95% of the investigated nut oils. The TAG profiles showed characteristic patterns which can be used as ,fingerprints' of the genuine oils. Nut oils exhibiting quite similar fatty acid composition (e.g. hazelnut, pistachio and beech oil) could be clearly discriminated based on TAG showing significant differences between the oils. [source] Inhibition of lipid peroxidation by anthocyanins, anthocyanidins and their phenolic degradation productsEUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 1 2007Jonathan E. Brown Abstract Food components that delay or prevent biomolecule oxidation may be relevant in shelf life extension as well as disease prevention. Anthocyanins are a potentially important group of compounds, but they are prone to degradation both in vitro and in vivo, producing simple phenols. In this study, eight structurally related (poly)phenols [anthocyan(id)ins and phenolic acids] were examined for their ability to inhibit lipid oxidation at physiologically relevant concentrations (100,1000,nM) using the Cu2+ -mediated low-density lipoprotein oxidation model. Interaction between each (poly)phenol and Cu2+ ions was also investigated. (Poly)phenols with an ortho -dihydroxy group arrangement, i.e. cyanidin-3-glucoside, cyanidin and protocatechuic acid, were the most effective within their class, extending the lag phase to oxidation by 137, 255 and 402%, respectively (at 1000,nM). At the same concentration, trihydroxy-substituted compounds (delphinidin and gallic acid) were of intermediate efficacy, extending the lag phase by 175 and 38%, respectively. Compounds with the 4'-hydroxy-3',5'-methoxy arrangement (i.e. malvidin-3-glucoside and malvidin) were the least effective (3 and 58% extension, respectively), while syringic acid (4-hydroxy-3,5-dihydroxy benzoic acid) was pro-oxidant (lag phase shortened by 31%). (Poly)phenols with the ortho -dihydroxy arrangement chelated Cu2+ ions, which in part explains their greater efficacy over the other (poly)phenols in this model oxidation system. However, differences in their hydrogen-donating properties and their partitioning between lipid and hydrophilic phases are also relevant in explaining these structure-activity relationships. [source] Proteolytically Degradable Photo-Polymerized Hydrogels Made From PEG,Fibrinogen Adducts,ADVANCED ENGINEERING MATERIALS, Issue 6 2010Daniel Dikovsky Abstract We develop a biomaterial based on protein,polymer conjugates where poly(ethylene glycol) (PEG) polymer chains are covalently linked to multiple thiols on denatured fibrinogen. We hypothesize that conjugation of large diacrylate-functionalized linear PEG chains to fibrinogen could govern the molecular architecture of the polymer network via a unique protein,polymer interaction. The hypothesis is explored using carefully designed shear rheometry and swelling experiments of the hydrogels and their precursor PEG/fibrinogen conjugate solutions. The physical properties of non-cross-linked and UV cross-linked PEGylated fibrinogen having PEG molecular weights ranging from 10 to 20,kDa are specifically investigated. Attaching multiple hydrophilic, functionalized PEG chains to the denatured fibrinogen solubilizes the denatured protein and enables a rapid free-radical polymerization cross-linking reaction in the hydrogel precursor solution. As expected, the conjugated protein-polymer macromolecular complexes act to mediate the interactions between radicals and unsaturated bonds during the free-radical polymerization reaction, when compared to control PEG hydrogels. Accordingly, the cross-linking kinetics and stiffness of the cross-linked hydrogel are highly influenced by the protein,polymer conjugate architecture and molecular entanglements arising from hydrophobic/hydrophilic interactions and steric hindrances. The proteolytic degradation products of the protein,polymer conjugates proves to be were different from those of the non-conjugated denatured protein degradation products, indicating that steric hindrances may alter the proteolytic susceptibility of the PEG,protein adduct. A more complete understanding of the molecular complexities associated with this type of protein-polymer conjugation can help to identify the full potential of a biomaterial that combines the advantages of synthetic polymers and bioactive proteins. [source] Lichen extracts as raw materials in perfumery.FLAVOUR AND FRAGRANCE JOURNAL, Issue 3 2009Part 2: treemoss Abstract This is a comprehensive review of extracts from the lichen Pseudevernia furfuracea (treemoss) that are used in the fragrance industry. Qualitative and quantitative analytical aspects are critically reviewed and the results are compared to those of the related oakmoss extracts. It is shown that more than 90 constituents have been identified so far in treemoss extracts, including 42 depsides, depsidones or depside-derived compounds, and 42 triterpenes or steroids. Constituents of certain host trees, mainly Pinus species, generate specific analytical and toxicological issues which need to be considered in addition to those related to the known degradation products of lichen compounds. A new classification of lichen extracts used as raw materials in fragrance compounding is proposed. Copyright © 2009 John Wiley & Sons, Ltd. [source] Cholestasis enhances liver ischemia/reperfusion-induced coagulation activation in ratsHEPATOLOGY RESEARCH, Issue 2 2010Jaap J. Kloek Aim:, Cholestasis is associated with increased morbidity and mortality in patients undergoing major liver surgery. An additional risk is induced when vascular inflow occlusion is applied giving rise to liver ischemia/reperfusion (I/R) injury. The role of the coagulation system in this type of injury is elusive. The aim of the current study was to assess activation of coagulation following hepatic I/R injury in cholestatic rats. Methods:, Male Wistar rats were randomized into two groups and subjected to bile duct ligation (BDL) or sham laparotomy. After 7 days, both groups underwent 30 min partial liver ischemia. Animals were sacrificed before ischemia or after 6 h, 24 h, and 48 h reperfusion. Results:, Plasma AST and ALT levels were higher after I/R in cholestatic rats (P < 0.05). Hepatic necrosis, liver wet/dry ratio and neutrophil influx were increased in the BDL group up to 48 h reperfusion (P < 0.05). Liver synthetic function was decreased in the BDL group as reflected by prolonged prothrombin time after 6 h and 24 h reperfusion (P < 0.05). I/R in cholestatic rats resulted in a 12-fold vs. 7-fold (P < 0.01) increase in markers for thrombin generation and a 6-fold vs. 2-fold (P < 0.01) increase in fibrin degradation products (BDL vs. control, respectively). In addition, the cholestatic rats exhibited significantly decreased levels of antithrombin (AT) III and increased levels of the fibrinolytic inhibitor plasminogen activator inhibitor (PAI-1) during reperfusion. Conclusions:, Cholestasis significantly enhances I/R-induced hepatic damage and inflammation that concurs with an increased activation of coagulation and fibrinolysis. [source] The effects of ice storage on inosine monophosphate, inosine, hypoxanthine, and biogenic amine formation in European catfish (Silurus glanis) filletsINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 10 2009Fatih Özogul Summary European catfish fillets in ice were evaluated by measuring nucleotide components and biogenic amine contents and these then compared with sensory and microbiological assessment during the 21 days of iced storage. Analyses were carried out using two different rapid HPLC methods for nucleotid degradation products and biogenic amine contents in European catfish fillets. Sensory evaluation showed that storage life of European catfish found to be 14,18 days. Initial inosine monophosphate (IMP) level was 12.6 ,mol g1 and then decreased during the rest of storage period. Inosine (INO) level increased rapidly until 7 days of storage. Hypoxanthine (Hx) level increased almost linearly with storage time. The most accumulated biogenic amines were putrescine, cadaverine, spermidine, spermine, and serotonin in all the European catfish fillets during the storage, although the formation of biogenic amines levels was fluctuated. Histamine was only detectable at 4 and 7 days of storage as low as 1 mg 100 g1 fish. Total viable count in European catfish increased rapidly with storage time and reached ,109 cfu g1 when the fillets were not acceptable for consumption. [source] A review of the kinetics of degradation of inosine monophosphate in some species of fish during chilled storageINTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 4 2006Peter Howgate Summary A literature search was made for data on the concentrations of inosine monophosphate (IMP) and its degradation products, inosine (Ino) and hypoxanthine (Hx), in the flesh of vertebrate fish during storage in ice. Twenty-one publications containing data for forty-five species were selected for review. A mathematical model was developed for analysing the data by assuming that the kinetics of degradation of IMP could be modelled as consecutive first order reactions. The model was fitted to the data and in about half of the cases examined in the review the data suggested that IMP and degradation products were lost by leaching and the kinetic model was extended to allow for this loss. In all of the cases reviewed the mathematical model was a good fit to the experimental data and the reaction rates for the reactions are tabulated in the paper. In all species the concentration of IMP decreased as a first order reaction, but for thirteen of the species examined the enzyme model of IMP to Ino to Hx did not fit the data in that either Ino or Hx did not accumulate in the muscle. There were only a few examples of replications of storage trials within species and comparison of the outcomes of these replications suggested that season or, in the case of farmed fish, genetic stock or cultural practices might influence initial IMP concentrations or reaction rates. [source] Quantification of red blood cell fragmentation by the automated hematology analyzer XE-2100 in patients with living donor liver transplantationINTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 5 2005S. BANNO Summary The fragmented red cell (FRC) is a useful index for diagnosing and determining the severity of thrombotic thrombocytopenic purpura (TTP), thrombotic microangiopathy (TMA) and other similar conditions, as it is found in peripheral blood in patients with these diseases. The FRC expression rate has conventionally been determined by manual methods using smear samples. However, it is difficult to attain accurate quantification by such methods as they are time consuming and prone to a great margin of error. With cases of living donor liver transplantation, the current study examined the possibility of using a multi-parameter automated hematology analyzer, the XE-2100 (Sysmex Corporation) for FRC quantification. While there was a notable correlation between the manual and automated measurements, the manual measurement resulted in higher values. This suggested remarkable variations in judgment by individuals. The FRC values had a significant correlation with the reticulocyte count, red blood cell distribution width (RDW), fibrin/fibrinogen degradation products (P-FDP) and lactate dehydrogenase (LDH) among the test parameters, and this finding was consistent with the clinical progression in patients. The automated method can offer precise measurements in a short time without inter-observer differences, meeting the requirement for standardization. The determination of FRC count (%) by the XE-2100 that enables early diagnoses and monitoring of TTP or TMA will be useful in the clinical field. [source] Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strainsJOURNAL OF APPLIED MICROBIOLOGY, Issue 5 2004H. Bejaoui Abstract Aims:, To assess, for the first time the efficiency in removing ochratoxin A (OTA) from laboratory medium [yeast peptone glucose (YPG)], synthetic grape juice medium (SGM) and natural grape juice by viable and dead (heat and acid-treated) oenological Saccharomyces strains (five S. cerevisiae and one S. bayanus) compared with a commercial yeast walls additive. Methods and Results:, Levels of OTA during its interaction with six oenological Saccharomyces strains (five S. cerevisiae and one S. bayanus) or with a commercial yeast walls additive in YPG medium, in SGM or in natural grape juices was assessed by HPLC after appropriate extraction methods. A significant decrease of OTA levels in YPG medium and SGM was observed for many of the growing strains reaching a maximum of 45%, but no degradation products were detected. With both heat and acid pretreated yeasts, OTA removal was enhanced, indicating that adsorption, not catabolism, is the mechanism to reduce OTA concentrations. Adsorption was also improved when the yeast concentration was increased and when the pH of the medium was lower. Approximately 90% of OTA was bound rapidly within 5 min and up to 72 h of incubation with heat-treated cells of either S. cerevisiae or S. bayanus. A comparative study between heat-treated cells (HC) and commercial yeast walls (YW) (used as oenological additive), introduced at two different concentrations (0·2 and 6·7 g l,1) in an OTA-contaminated grape juice, showed the highest efficiency by HC to adsorb rapidly within 5 min the total amount of the mycotoxin. Conclusions:, Oenological S. cerevisiae and S. bayanus were able to remove ochatoxin A from synthetic and natural grape juices. This removal was rapid and improved by dead yeasts having more efficiency than commercial yeast walls. Significance and Impact of the Study:, The efficiency of heat-treated yeasts to remove OTA gives a new hope for grape juice and must decontamination avoiding negative impacts on human health. [source] Observations of physical aging in a polycarbonate and acrylonitrile,butadiene,styrene blendJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008Jacky K. Y. Tang Abstract The effects of physical aging of a 75 : 25 PC/ABS blend have been studied using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). From DSC, two distinct peak endotherms at about 90°C and 110°C, which are associated with the glass transition of ABS (Tg,ABS) and PC (Tg,PC) components, respectively, were observed. When progressive aging was monitored at 80°C for over 1000 h, the changes in enthalpic relaxation, glass and fictive temperatures for the blend followed similar trends to those already seen in the literature for PC aged between 125 and 130°C. The rate of enthalpy relaxation was also comparable. The plot of peak endotherm against logarithmic aging time for the PC blend constituent, however, behaved quite differently from the linear relationship known for highly aged PC. The ABS peak component also appeared to be insensitive to aging. Both observations were confirmed to be statistically significant using analysis of variance methods. Using temperature modulated-DSC, there is evidence that aging increases the blend miscibility as the Tg,PC shifts toward the stationary Tg,ABS during aging. Parallel FTIR investigations found oxidation of butadiene during aging to be even at this relatively low temperature, forming hydroxyl and carbonyl degradation products. The presence of ABS in the blend also appeared to have prevented the shifting from the trans-cis to trans-trans arrangement of the carbonate linkage, which is a well-known phenomenon during elevated temperature aging of PC alone. Moreover, the carbonate linkage appears to have been at the lower energy, trans-trans, arrangement prior to the aging process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source] |