Home About us Contact | |||
Day Culture Period (day + culture_period)
Selected AbstractsLong-term culture of Xenopus presumptive ectoderm in a nutrient-supplemented culture mediumDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5-6 2003Yasuto Fukui Animal cap assay is a useful experimental model for investigating the activity of inducers in amphibian development. This assay has revealed that activin A is a potent mesoderm-inducing factor. However, it has been very difficult to induce highly differentiated tissues such as cartilage in a 3,4 day culture period. It was recently reported that jaw cartilage was induced in vitro in an animal cap that had been cultured for 14 days in Steinberg's solution using the sandwich culture method and activin A. Under these conditions, necrosis was occasionally observed in the explants. In this study, we have achieved long-term animal cap cultures in a nutrient-supplemented culture medium designated RDX. This medium was made by modifying the saline concentration of the RD medium previously developed as a basal medium for the serum-free culture of various kinds of mammalian cells. The explants cultured in RDX grew more vigorously compared with those in Steinberg's solution. RDX medium promoted a wider variety of tissue induction and gene expression in the animal caps than Steinberg's solution, and also increased the frequency of cartilage induction. Therefore, the supplemental nutrients may support and promote the differentiation of cartilage. This long-term culture method using RDX medium is useful for studying the differentiation of tissues or organs such as cartilage in vitro. [source] Retinoic acid increases the length and volume density of ducts in the rat embryonic pancreasDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2 2003Carene Erasmus In this study, the role of all -trans retinoic acid (RA) on the proliferation of rat embryonic pancreas ducts and on the proportion of insulin cells was investigated. All- trans RA (10,6 m) was added to Ham's F12. ITS serum-free medium in which 12.5 day rat dorsal pancreatic buds were cultured on Matrigel. Control explants were cultured on Matrigel in Ham's F12. ITS alone or in Ham's F12. ITS containing ethanol (the diluent for RA). After a 7 day culture period, explants were incubated with bromodeoxyuridine (BrdU) for assessment of cell proliferation. Explants were processed for both morphometry and immunocytochemistry. The length density and volume density of the pancreatic ducts were assessed using an image analysis system. Cells positive for insulin, BrdU and glucagon were localized on adjacent serial sections. RA treatment caused a statistically significant increase in the volume density (P < 0.007) and length density (P < 0.008) of the ducts, as well as a 1.2-fold increase (P < 0.0001) in the proportion of insulin to glucagon cells, compared to both control groups. Few insulin cells were BrdU positive, indicating that cells had a low proliferation rate. The increased proportion of insulin cells may relate to the increased volume density and length density of the ducts in RA-treated explants. It is suggested that RA stimulated the production of additional progenitor cells and not proliferation of existing insulin cells. [source] Inverse relationship between seizure expression and extrasynaptic NMDAR function following chronic NMDAR inhibitionEPILEPSIA, Issue 2010Suzanne B. Bausch Summary We showed previously that electrographic seizures involving dentate granule cells in organotypic hippocampal slice cultures were dramatically reduced following chronic treatment with the NR2B-selective antagonist, Ro25,6981, but were increased following chronic treatment with the high-affinity competitive antagonist, D(-)-2-amino-5-phosphonopentanoic acid (D-APV). To begin to investigate the potential mechanisms underlying the differential effects of N -methyl- d -aspartate receptor (NMDAR) antagonists on seizures, electrophysiologic experiments were conducted in dentate granule cells in hippocampal slice cultures treated for the entire 17,21 day culture period with vehicle, Ro25,6981 or D-APV. Initial experiments revealed a lack of an association between miniature excitatory postsynaptic current (mEPSC) measures and seizures suggesting that shifts in mEPSC were unlikely to account for the differential effects of D-APV and Ro25,6981 on seizures. However, the amplitude of tonic NMDAR-mediated currents was reduced in cultures treated chronically with D-APV and dramatically enhanced in cultures treated chronically with Ro25,6981. Because tonic NMDAR currents are mediated primarily by extrasynaptic NMDAR, these data show an inverse relationship between changes in extrasynaptic NMDAR function and alterations in seizure expression. [source] Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactorJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 1 2002Vassilios I. Sikavitsas Abstract The aim of this study is to investigate the effect of the cell culture conditions of three-dimensional polymer scaffolds seeded with rat marrow stromal cells (MSCs) cultured in different bioreactors concerning the ability of these cells to proliferate, differentiate towards the osteoblastic lineage, and generate mineralized extracellular matrix. MSCs harvested from male Sprague,Dawley rats were culture expanded, seeded on three-dimensional porous 75:25 poly(D,L -lactic- co -glycolic acid) biodegradable scaffolds, and cultured for 21 days under static conditions or in two model bioreactors (a spinner flask and a rotating wall vessel) that enhance mixing of the media and provide better nutrient transport to the seeded cells. The spinner flask culture demonstrated a 60% enhanced proliferation at the end of the first week when compared to static culture. On day 14, all cell/polymer constructs exhibited their maximum alkaline phosphatase activity (AP). Cell/polymer constructs cultured in the spinner flask had 2.4 times higher AP activity than constructs cultured under static conditions on day 14. The total osteocalcin (OC) secretion in the spinner flask culture was 3.5 times higher than the static culture, with a peak OC secretion occurring on day 18. No considerable AP activity and OC secretion were detected in the rotating wall vessel culture throughout the 21-day culture period. The spinner flask culture had the highest calcium content at day 14. On day 21, the calcium deposition in the spinner flask culture was 6.6 times higher than the static cultured constructs and over 30 times higher than the rotating wall vessel culture. Histological sections showed concentration of cells and mineralization at the exterior of the foams at day 21. This phenomenon may arise from the potential existence of nutrient concentration gradients at the interior of the scaffolds. The better mixing provided in the spinner flask, external to the outer surface of the scaffolds, may explain the accelerated proliferation and differentiation of marrow stromal osteoblasts, and the localization of the enhanced mineralization on the external surface of the scaffolds. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 62: 136,148, 2002 [source] Investigating the importance of flow when utilizing hyaluronan scaffolds for tissue engineeringJOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 2 2010Gail C. Donegan Abstract Esterified hyaluronan scaffolds offer significant advantages for tissue engineering. They are recognized by cellular receptors, interact with many other extracellular matrix proteins and their metabolism is mediated by intrinsic cellular pathways. In this study differences in the viability and structural integrity of vascular tissue models cultured on hyaluronan scaffolds under laminar flow conditions highlighted potential differences in the biodegradation kinetics, processes and end-products, depending on the culture environment. Critical factors are likely to include seeding densities and the duration and magnitude of applied biomechanical stress. Proteomic evaluation of the timing and amount of remodelling protein expression, the resulting biomechanical changes arising from this response and metabolic cell viability assay, together with examination of tissue morphology, were conducted in vascular tissue models cultured on esterified hyaluronan felt and PTFE mesh scaffolds. The vascular tissue models were derived using complete cell sheets derived from harvested and expanded umbilical cord vein cells. This seeding method utilizes high-density cell populations from the outset, while the cells are already supported by their own abundant extracellular matrix. Type I and type IV collagen expression in parallel with MMP-1 and MMP-2 expression were monitored in the tissue models over a 10 day culture period under laminar flow regimes using protein immobilization technologies. Uniaxial tensile testing and scanning electron microscopy were used to compare the resulting effects of hydrodynamic stimulation upon structural integrity, while viability assays were conducted to evaluate the effects of shear on metabolic function. The proteomic results showed that the hyaluronan felt-supported tissues expressed higher levels of all remodelling proteins than those cultured on PTFE mesh. Overall, a 21% greater expression of type I collagen, 24% higher levels of type IV collagen, 24% higher levels of MMP-1 and 34% more MMP-2 were observed during hydrodynamic stress. This was coupled with a loss of structural integrity in these models after the introduction of laminar flow, as compared to the increases in all mechanical properties observed in the PTFE mesh-supported tissues. However, under flow conditions, the hyaluronan-supported tissues showed some recovery of the viability originally lost during static culture conditions, in contrast to PTFE mesh-based models, where initial gains were followed by a decline in metabolic viability after applied shear stress. Proteomic, cell viability and mechanical testing data emphasized the need for extended in vitro evaluations to enable better understanding of multi-stage remodelling and reparative processes in tissues cultured on biodegradable scaffolds. This study also highlighted the possibility that in high-density tissue culture with a biodegradable component, dynamic conditions may be more conducive to optimal tissue development than the static environment because they facilitate the efficient removal of high concentrations of degradation end-products accumulating in the pericellular space. Copyright © 2009 John Wiley & Sons, Ltd. [source] Construction of Skeletal Myoblast-Based Polyurethane Scaffolds for Myocardial RepairARTIFICIAL ORGANS, Issue 6 2007Matthias Siepe Abstract:, Intramyocardial transplantation of skeletal myoblasts augments postinfarction cardiac function. However, poor survival of injected cells limits this therapy. It is hypothesized that implantation of myoblast-based scaffolds would result in greater cell survival. Rat skeletal myoblasts were seeded on highly porous polyurethane (PU) scaffolds (7.5 × 7.5 × 2.0 mm). The effect of several scaffold pretreatments, initial cell densities, and culture periods was tested by DNA-based cell count and viability assessment. Seeded PU scaffolds were implanted on infarcted hearts and immunohistology was performed 4 weeks later. Precoating with laminin allowed the most favorable cell attachment. An initial inoculation with 5 × 106 cells followed by a 15-day culture period resulted in optimal myoblast proliferation. Four weeks after their implantation in rats, numerous myoblasts were found throughout the seeded patches although no sign of differentiation could be observed. This myoblast seeding technique on PU allows transfer of a large number of living myoblasts to a damaged myocardium. [source] Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineeringBIOELECTROMAGNETICS, Issue 7 2007Ming-Tzu Tsai Abstract Bone tissue engineering is an interdisciplinary field involving both engineers and cell biologists, whose main purpose is to repair bone anatomical defects and maintain its functions. A novel system that integrates pulsed electromagnetic fields (PEMFs) and bioreactors was applied to bone tissue engineering for regulating osteoblast proliferation and differentiation in'vitro. Osteoblasts were acquired from the calvaria of newborn Wistar rats and isolated after sequential digestion. Poly(DL -lactic-co-glycolic acid) (PLGA) scaffolds were made by the solvent merging/particulate leaching method. Osteoblasts were seeded into porous PLGA scaffolds with 85% porosity and cultured in bioreactors for the 18-day culture period. Cells were exposed to PEMF pulsed stimulation with average (rms) amplitudes of either 0.13, 0.24, or 0.32 mT amplitude. The resulting induced electric field waveform consisted of single, narrow 300 µs quasi-rectangular pulses with a repetition rate of 7.5'Hz. The results showed that PEMF stimulation for 2 and 8 h at .13 mT increased the cell number on days 6 and 12, followed by a decrease on day 18 using 8 h stimulation. However, ALP activity was decreased and then increased on days 12 and 18, respectively. On the other hand, PEMF-treated groups (irrespective of the stimulation time) at 0.32 mT inhibited cell proliferation but enhanced ALP activity during the culture period. These findings suggested that PEMF stimulation with specific parameters had an effect on regulating the osteoblast proliferation and differentiation. This novel integrated system may have potential in bone tissue engineering. Bioelectromagnetics 28:519,528, 2007. © 2007 Wiley-Liss, Inc. [source] |