Home About us Contact | |||
Data Preparation (data + preparation)
Selected AbstractsData Preparation for Real-time High Quality Rendering of Complex ModelsCOMPUTER GRAPHICS FORUM, Issue 3 2006Reinhard Klein The capability of current 3D acquisition systems to digitize the geometry reflection behaviour of objects as well as the sophisticated application of CAD techniques lead to rapidly growing digital models which pose new challenges for interaction and visualization. Due to the sheer size of the geometry as well as the texture and reflection data which are often in the range of several gigabytes, efficient techniques for analyzing, compressing and rendering are needed. In this talk I will present some of the research we did in our graphics group over the past years motivated by industrial partners in order to automate the data preparation step and allow for real-time high quality rendering e.g. in the context of VR-applications. Strength and limitations of the different techniques will be discussed and future challenges will be identified. The presentation will go along with live demonstrations. [source] Unstructured grid generation using LiDAR data for urban flood inundation modellingHYDROLOGICAL PROCESSES, Issue 11 2010Ryota Tsubaki Abstract Inundation disasters, caused by sudden water level rise or rapid flow, occur frequently in various parts of the world. Such catastrophes strike not only in thinly populated flood plains or farmland but also in highly populated villages or urban areas. Inundation of the populated areas causes severe damage to the economy, injury, and loss of life; therefore, a proper management scheme for the disaster has to be developed. To predict and manage such adversity, an understanding of the dynamic processes of inundation flow is necessary because risk estimation is performed based on inundation flow information. In this study, we developed a comprehensive method to conduct detailed inundation flow simulations for a populated area with quite complex topographical features using LiDAR (Light Detection and Ranging) data. Detailed geospatial information including the location and shape of each building was extracted from the LiDAR data and used for the grid generation. The developed approach can distinguish buildings from vegetation and treat them differently in the flow model. With this method, a fine unstructured grid can be generated representing the complicated urban land features precisely without exhausting labour for data preparation. The accuracy of the generated grid with different grid spacing and grid type is discussed and the optimal range of grid spacing for direct representation of urban topography is investigated. The developed method is applied to the estimation of inundation flows, which occurred in the basin of the Shin-minato River. A detailed inundation flow structure is represented by the flow model, and the flow characteristics with respect to topographic features are discussed. Copyright © 2010 John Wiley & Sons, Ltd. [source] Three-dimensional elastoplastic analysis by triple-reciprocity boundary element methodINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 8 2007Yoshihiro Ochiai Abstract In general, internal cells are required to solve elastoplastic problems using a conventional boundary element method (BEM). However, in this case, the merit of BEM, which is ease of data preparation, is lost. Triple-reciprocity BEM can be used to solve two-dimensional elastoplasticity problems with a small plastic deformation. In this study, it is shown that three-dimensional elastoplastic problems can be solved, without the use of internal cells, by the triple-reciprocity BEM. An initial strain formulation is adopted and the initial strain distribution is interpolated using boundary integral equations. A new computer program was developed and applied to solving several problems. Copyright © 2006 John Wiley & Sons, Ltd. [source] Axial symmetric elasticity analysis in non-homogeneous bodies under gravitational load by triple-reciprocity boundary element methodINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 7 2009Yoshihiro Ochiai Abstract In general, internal cells are required to solve elasticity problems by involving a gravitational load in non-homogeneous bodies with variable mass density when using a conventional boundary element method (BEM). Then, the effect of mesh reduction is not achieved and one of the main merits of the BEM, which is the simplicity of data preparation, is lost. In this study, it is shown that the domain cells can be avoided by using the triple-reciprocity BEM formulation, where the density of domain integral is expressed in terms of other fields that are represented by boundary densities and/or source densities at isolated interior points. Utilizing the rotational symmetry, the triple-reciprocity BEM formulation is developed for axially symmetric elasticity problems in non-homogeneous bodies under gravitational force. A new computer program was developed and applied to solve several test problems. Copyright © 2008 John Wiley & Sons, Ltd. [source] Molecular replacement with MOLREPACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2010Alexei Vagin MOLREP is an automated program for molecular replacement that utilizes a number of original approaches to rotational and translational search and data preparation. Since the first publication describing the program, MOLREP has acquired a variety of features that include weighting of the X-ray data and search models, multi-copy search, fitting the model into electron density, structural superposition of two models and rigid-body refinement. The program can run in a fully automatic mode using optimized parameters calculated from the input data. [source] |