Dark Respiration Rates (dark + respiration_rate)

Distribution by Scientific Domains

Selected Abstracts

Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats

I. J. Wright
Summary 1,Relationships were examined among photosynthetic capacity (Amass and Aarea), foliar dark respiration rate (Rd-mass and Rd-area), stomatal conductance to water (Gs), specific leaf area (SLA), and leaf nitrogen (N) and phosphorus (P) across 79 perennial species occurring at four sites with contrasting rainfall levels and soil nutrients in eastern Australia. We hypothesized that the slope of log,log ,scaling' relationships between these traits would be positive and would not differ between sites, although slope elevations might shift between habitat types. 2,Amass, Rd-mass, SLA, Nmass and Pmass were positively associated in common slopes fitted across sites or rainfall zones, although rather weakly within individual sites in some cases. The relationships between Amass (and Rd-mass) with each of Nmass and SLA were partially independent of each other, with Amass (or Rd-mass) increasing with SLA at a given Nmass, or with Nmass at a given SLA (only weakly in the case of Amass). These results improve the quantification and extend the generalization of reported patterns to floras largely unlike those studied previously, with the additional contribution of including phosphorus data. 3,Species from drier sites differed in several important respects. They had (i) higher leaf N and P (per dry mass or area); (ii) lower photosynthetic capacity at a given leaf N or P; (iii) higher Rd-mass at a given SLA or Amass; and (iv) lower Gs at a given Aarea (implying lower internal CO2 concentration). 4,These trends can be interpreted as part of a previously undocumented water conservation strategy in species from dry habitats. By investing heavily in photosynthetic enzymes, a larger drawdown of internal CO2 concentration is achieved, and a given photosynthetic rate is possible at a lower stomatal conductance. Transpirational water use is similar, however, due to the lower-humidity air in dry sites. The benefit of the strategy is that dry-site species reduce water loss at a given Aarea, down to levels similar to wet-site species, despite occurring in lower-humidity environments. The cost of high leaf N is reflected in higher dark respiration rates and, presumably, additional costs incurred by N acquisition and increased herbivory risk. [source]

Leaf dark respiration as a function of canopy position in Nothofagus fusca trees grown at ambient and elevated CO2 partial pressures for 5 years

K. L. Griffin
Summary 1,Mass-based and area-based rates of respiration, leaf nitrogen content, leaf total protein content, non-structural carbohydrates and leaf mass per unit area (LMA) all decreased with depth in the canopy of Nothofagus fusca (Hook. F.) Oerst. (Red beech) trees grown for 5 years at ambient (36 Pa) or elevated (66 Pa) CO2 partial pressures. 2Elevated CO2 partial pressure had a strong effect on dark respiration, decreasing both mass-based and area-based rates at all canopy positions, but had little or no effect on leaf physical and biochemical properties. 3Leaf sugars, starch, protein, N and LMA were all correlated with respiration rate, and are therefore strong predictors of area-based dark respiration rates. The y axis intercept of regressions of respiration rate on mean leaf N, protein, starch and LMA was lower for plants grown at elevated compared to ambient CO2 partial pressures because of the differential effect of growth at elevated CO2 partial pressure on leaf gas-exchange, chemical and physical characteristics. 4,The lower respiration rates for leaves from trees grown at elevated CO2 partial pressure resulted in a significant increase in the ratio of light-saturated net photosynthesis to respiration, increasing the potential carbon-use efficiency of these leaves. [source]

Effect of external pH on the growth, photosynthesis and photosynthetic electron transport of Chlamydomonas acidophila Negoro, isolated from an extremely acidic lake (pH 2.6)

ABSTRACT In extremely acidic lakes, low primary production rates have been measured. We assumed that proton stress might explain these observations and therefore investigated the photosynthetic behaviour of a Chlamydomonas species, a main primary producer in acidic lakes, over a range of pH values. Identified as C. acidophila using small subunit rDNA analysis, this species is identical to other isolates from acidic environments in Europe and South America, suggesting a worldwide distribution. Laboratory experiments with C. acidophila, revealed a broad pH-tolerance for growth and photosynthesis, the lower pH limit lying at pH 1.5 and the upper limit at pH 7. Growth rates at optimum pH conditions (pH 3 and 5) were equal to those of the mesophilic Chlamydomonas reinhardtii. In contrast, photosynthetic rates were significantly higher, suggesting that higher photosynthetic rates compensated for higher dark respiration rates, as confirmed experimentally. Electron transport capacities of PSI and PSII, P700+ re-reduction times and measurements of PSII fluorescence revealed the induction of alternative electron transport mechanisms, such as chlororespiration, state transitions and cyclic electron transport, only at suboptimal pH values (pH 1.5; 4 and 6,7). The results indicate, that C. acidophila is well adapted to low pH and that the relatively low primary production rates are not a result of pH stress. [source]