Home About us Contact | |||
Daily Rhythm (daily + rhythm)
Selected AbstractsDaily Rhythms in Glucose Metabolism: Suprachiasmatic Nucleus Output to Peripheral TissueJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2003S. E. La Fleur Abstract The body has developed several control mechanisms to maintain plasma glucose concentrations within strict boundaries. Within those physiological boundaries, a clear daily rhythm in plasma glucose concentrations is present; this rhythm depends on the biological clock, which is located in the hypothalamic suprachiasmatic nucleus (SCN), and is independent of the daily rhythm in food intake. Interestingly, there is also a daily rhythm in glucose uptake, which also depends on the SCN and follows the same pattern as the daily rhythm in plasma glucose concentrations; both rise before the onset of activity. Thus, the SCN prepares the individual for the upcoming activity period in two different ways: by increasing plasma glucose concentrations and by facilitating tissue glucose uptake. In addition to this anticipation of glucose metabolism to expected glucose demands, the SCN also influences, depending on the time of the day, the responses of pancreas and liver to abrupt glucose changes (such as a glucose rise after a meal or hypoglycaemia). This review presents the view that the SCN uses different routes to (i) maintain daily glucose balance and (ii) set the level of the endocrine response to abrupt blood glucose changes. [source] Fetal Ethanol Exposure Disrupts the Daily Rhythms of Splenic Granzyme B, IFN- ,, and NK Cell Cytotoxicity in AdulthoodALCOHOLISM, Issue 6 2006Alvaro Arjona Background: Circadian (and daily) rhythms are physiological events that oscillate with a 24-hour period. Circadian disruptions may hamper the immune response against infection and cancer. Several immune mechanisms, such as natural killer (NK) cell function, follow a daily rhythm. Although ethanol is known to be a potent toxin for many systems in the developing fetus, including the immune system, the long-term effects of fetal ethanol exposure on circadian immune function have not been explored. Methods: Daily rhythms of cytotoxic factors (granzyme B and perforin), interferon- , (IFN- ,), and NK cell cytotoxic activity were determined in the spleens of adult male rats obtained from mothers who were fed during pregnancy with chow food or an ethanol-containing liquid diet or pair-fed an isocaloric liquid diet. Results: We found that adult rats exposed to ethanol during their fetal life showed a significant alteration in the physiological rhythms of granzyme B and IFN- , that was associated with decreased NK cell cytotoxic activity. Conclusion: These data suggest that fetal ethanol exposure causes a permanent alteration of specific immune rhythms that may in part underlie the immune impairment observed in children prenatally exposed to alcohol. [source] Daily rhythms and sex differences in vasoactive intestinal polypeptide, VIPR2 receptor and arginine vasopressin mRNA in the suprachiasmatic nucleus of a diurnal rodent, Arvicanthis niloticusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009M. M. Mahoney Abstract Diurnal and nocturnal animals differ with respect to the time of day at which the ovulatory surge in luteinizing hormone occurs. In some species this is regulated by the suprachiasmatic nucleus (SCN), the primary circadian clock, via cells that contain vasoactive intestinal polypeptide (VIP) and vasopressin (AVP). Here, we evaluated the hypothesis that chronotype differences in the timing of the luteinizing hormone surge are associated with rhythms in expression of the genes that encode these neuropeptides. Diurnal grass rats (Arvicanthis niloticus) were housed in a 12/12-h light,dark cycle and killed at one of six times of day (Zeitgeber time 1, 5, 9, 13, 17, 21; ZT 0 = lights-on). In-situ hybridization was used to compare levels of vip, avp and VIP receptor mRNA (vipr2) in the SCN of intact females, ovariectomized females, ovariectomized females given estradiol and intact males. We found a sex difference in vip rhythms with a peak occurring at ZT 13 in males and ZT 5 in intact females. In all groups avp mRNA rhythms peaked during the day, from ZT 5 to ZT 9, and had a trough in the dark at ZT 21. There was a modest rhythm and sex difference in the pattern of vipr2. Most importantly, the patterns of each of these SCN rhythms relative to the light,dark cycle resembled those seen in nocturnal rodents. Chronotype differences in timing of neuroendocrine events associated with ovulation are thus likely to be generated downstream of the SCN. [source] Fetal Ethanol Exposure Disrupts the Daily Rhythms of Splenic Granzyme B, IFN- ,, and NK Cell Cytotoxicity in AdulthoodALCOHOLISM, Issue 6 2006Alvaro Arjona Background: Circadian (and daily) rhythms are physiological events that oscillate with a 24-hour period. Circadian disruptions may hamper the immune response against infection and cancer. Several immune mechanisms, such as natural killer (NK) cell function, follow a daily rhythm. Although ethanol is known to be a potent toxin for many systems in the developing fetus, including the immune system, the long-term effects of fetal ethanol exposure on circadian immune function have not been explored. Methods: Daily rhythms of cytotoxic factors (granzyme B and perforin), interferon- , (IFN- ,), and NK cell cytotoxic activity were determined in the spleens of adult male rats obtained from mothers who were fed during pregnancy with chow food or an ethanol-containing liquid diet or pair-fed an isocaloric liquid diet. Results: We found that adult rats exposed to ethanol during their fetal life showed a significant alteration in the physiological rhythms of granzyme B and IFN- , that was associated with decreased NK cell cytotoxic activity. Conclusion: These data suggest that fetal ethanol exposure causes a permanent alteration of specific immune rhythms that may in part underlie the immune impairment observed in children prenatally exposed to alcohol. [source] Experimental determination of the periodicity of incremental features in enamelJOURNAL OF ANATOMY, Issue 1 2006T. M. Smith Abstract Vital labelling of hard tissues was used to examine the periodicity of features of dental enamel microstructure. Fluorescent labels were administered pre- and postnatally to developing macaques (Macaca nemestrina), which were identified histologically in dentine and related to accentuated lines in enamel, allowing for counts of features within known-period intervals. This study demonstrates that cross-striations represent a daily rhythm in enamel secretion, and suggests that intradian lines are the result of a similar 12-h rhythm. Retzius lines were found to have a regular periodicity within individual dentitions, and laminations appear to represent a daily rhythm that also shows 12-h subdivisions. The inclusion of intradian lines and laminations represents the first empirical evidence for their periodicities in primates; these features frequently complicate precise measurements of secretion rate and Retzius line periodicity, which are necessary for determination of crown formation time. The biological basis of incremental feature formation is not completely understood; long-period features may result from interactions between short-period rhythms, although this does not explain the known range of Retzius line periodicities within humans or among primates. Studies of the genetic, neurological and hormonal basis of incremental feature formation are needed to provide more insight into their physiological and structural basis. [source] Validation of daily increment formation in otoliths of juvenile and adult European anchovyJOURNAL OF FISH BIOLOGY, Issue 3 2003P. Cermeño The otoliths of juveniles and adults of European anchovy Engraulis encrasicolus held in aquaria were marked by immersion in oxytetracycline hydrochloride (OTC) at concentrations between 350 and 410 mg l,1 for 12 h. Counts of microincrements between fluorescent bands validated the daily otolith increment formation. The otolith increments were easily readable at ×400 with average increment widths of c. 1·1 µm. Validation was successfully demonstrated in juveniles and adults maintained for short periods in the aquaria in the summer. For European anchovy captured as juvenile and reared to adults, however, increment formation appeared less than daily. The daily periodicity of the otoliths in juvenile European anchovy implies that counting of microincrements can be used to study their birth dates. The application of this technique to adults, however, may lead to the underestimation of actual age and further research needs to be done to clarify the reasons for the apparent loss of the daily rhythm over long periods. [source] Daily Rhythms in Glucose Metabolism: Suprachiasmatic Nucleus Output to Peripheral TissueJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2003S. E. La Fleur Abstract The body has developed several control mechanisms to maintain plasma glucose concentrations within strict boundaries. Within those physiological boundaries, a clear daily rhythm in plasma glucose concentrations is present; this rhythm depends on the biological clock, which is located in the hypothalamic suprachiasmatic nucleus (SCN), and is independent of the daily rhythm in food intake. Interestingly, there is also a daily rhythm in glucose uptake, which also depends on the SCN and follows the same pattern as the daily rhythm in plasma glucose concentrations; both rise before the onset of activity. Thus, the SCN prepares the individual for the upcoming activity period in two different ways: by increasing plasma glucose concentrations and by facilitating tissue glucose uptake. In addition to this anticipation of glucose metabolism to expected glucose demands, the SCN also influences, depending on the time of the day, the responses of pancreas and liver to abrupt glucose changes (such as a glucose rise after a meal or hypoglycaemia). This review presents the view that the SCN uses different routes to (i) maintain daily glucose balance and (ii) set the level of the endocrine response to abrupt blood glucose changes. [source] Circadian Timing of Ethanol Exposure Exerts Enduring Effects on Subsequent Ad Libitum Consumption in C57 MiceALCOHOLISM, Issue 7 2009Jennifer L. Trujillo Background:, There is a daily rhythm in the voluntary intake of ethanol in mice, with greatest consumption in the early night and lowest intake during the day. The role of daily timing of ethanol exposure on the development and control of long-term ethanol self-administration has been neglected. The present study examines these issues using C57BL/6J mice. Methods:, Mice were repeatedly exposed to 10% ethanol for 2 hours early in the night or day for several weeks. Subsequently, ethanol was available at the opposite time (Expt 1) or 24 hours daily (Expts 1 and 2). Lick sensors recorded the patterns of drinking activity in Experiment 2. Results:, Mice exposed to ethanol during the night drink more than mice exposed during the day. Prior history did not affect ethanol intake when the schedule was reversed. Under 24-hour exposure conditions, mice with a history of drinking during the night consumed significantly more than mice drinking during the day. The circadian patterns of drinking were not altered. Conclusions:, These results demonstrate that the daily timing of ethanol exposure exerts enduring effects of self-administration of ethanol in mice. Understanding how circadian rhythms regulate ethanol consumption may be valuable for modifying subsequent intake. [source] Fetal Ethanol Exposure Disrupts the Daily Rhythms of Splenic Granzyme B, IFN- ,, and NK Cell Cytotoxicity in AdulthoodALCOHOLISM, Issue 6 2006Alvaro Arjona Background: Circadian (and daily) rhythms are physiological events that oscillate with a 24-hour period. Circadian disruptions may hamper the immune response against infection and cancer. Several immune mechanisms, such as natural killer (NK) cell function, follow a daily rhythm. Although ethanol is known to be a potent toxin for many systems in the developing fetus, including the immune system, the long-term effects of fetal ethanol exposure on circadian immune function have not been explored. Methods: Daily rhythms of cytotoxic factors (granzyme B and perforin), interferon- , (IFN- ,), and NK cell cytotoxic activity were determined in the spleens of adult male rats obtained from mothers who were fed during pregnancy with chow food or an ethanol-containing liquid diet or pair-fed an isocaloric liquid diet. Results: We found that adult rats exposed to ethanol during their fetal life showed a significant alteration in the physiological rhythms of granzyme B and IFN- , that was associated with decreased NK cell cytotoxic activity. Conclusion: These data suggest that fetal ethanol exposure causes a permanent alteration of specific immune rhythms that may in part underlie the immune impairment observed in children prenatally exposed to alcohol. [source] Development of PDF-immunoreactive cells, possible clock neurons, in the housefly Musca domesticaMICROSCOPY RESEARCH AND TECHNIQUE, Issue 2 2003Elzbieta Pyza Abstract Even though the housefly Musca domestica shows clear circadian rhythms in its behavioural and physiological processes, a circadian pacemaker system controlling these rhythms has not yet been described morphologically in this species. In M. domestica, neurons immunoreactive to pigment-dispersing factor (PDF), a neurotransmitter/neuromodulator of circadian information arising from a circadian clock and transmitted to target cells, are similar in their number and distribution to the PDF neurons of Drosophila melanogaster. In D. melanogaster these neurons co-localize PER protein and have been identified as clock neurons in that species. Here we report PDF-immunoreactive cells in the housefly's brain during postembryonic development in the larval and pupal stages, as well as in the adult fly soon after eclosion. In the housefly's brain, there are three groups of PDF-immunoreactive neurons: two groups with small (sPDFMe) and large (lPDFMe) cell bodies in the proximal medulla of the optic lobe; and one group in the dorsal protocerebrum (PDFD). Three out of four sPDFMe can be detected during the first hour of larval development, but the fourth sPDFMe is observed in the larva only from 48 hours after hatching, along with five lPDFMe neurons, seen first as two subgroups, and three out of four PDFD neurons. During postembryonic development these neurons show changes in their structure and immunoreactivity. New PDF neurons are observed during pupal development but these neurons mostly do not survive into adulthood. In the adult fly's brain, the PDF neurons have also been examined in double-labelled preparations made with a second antibody directed against the product of one of several clock genes: period (per), timeless (tim), or cryptochrome (cry). Among them, only immunoreactivity to CRY-like protein has been detected in the brain of M. domestica and has shown a daily rhythm in its concentration, as examined immunocytochemically. CRY was co-localized with PDF in the sPDFMe of the housefly's brain fixed during the day. The possibility that the sPDFMe neurons are the housefly's clock neurons is discussed. Microsc. Res. Tech. 62:103,113, 2003. © 2003 Wiley-Liss, Inc. [source] Engagement in occupations among men and women with schizophreniaOCCUPATIONAL THERAPY INTERNATIONAL, Issue 2 2006Ulrika Bejerholm Abstract This study describes engagement in daily occupations of 10 women and 10 men with schizophrenia. A 24-hour diary of time use and interview were used and analysed by content analysis. Three levels of occupational engagement were identified; (1) mainly disengaged throughout the day, (2) disengaged during some part of the day, and (3) largely engaged in occupations during the day. Each level of occupational engagement was related to a daily rhythm and a sense of meaning. The results of the content analysis showed that levels of engagement ranged from performing mostly quiet activities, alone, with little sense of meaning, to engaging in meaningful occupations that involved social interactions. In general female participants preferred activities in their home environment while males preferred activities outside their home environment. Although this study was limited by geographic and cultural boundaries, as well by the sample size, the results showed that being diagnosed as having schizophrenia does not necessarily mean having an impoverished lifestyle. Thus, it is important for occupational therapists to identify these variations in engagement in order to have a realistic point of departure in the evaluation process and in forming a therapeutic alliance with the client. In future research, methods need to be developed that can gather extensive information on how occupational engagement is related to health and well-being in individuals diagnosed with schizophrenia. Copyright © 2006 John Wiley & Sons, Ltd. [source] Photic and non-photic entrainment on daily rhythm of locomotor activity in goatsANIMAL SCIENCE JOURNAL, Issue 1 2010Claudia GIANNETTO ABSTRACT We studied the photic (L/D cycle) and non-photic (restricted feeding) entrainment on the patterns of daily rhythm of total locomotor activity in goats. Six female Maltese goats were subjected to three different artificial L/D cycles: 12/12 L/D, 12/12 D/L and constant light. During the 12/12 L/D and 12/12 D/L, food and water were available ad libitum. During constant light, animals were subjected to a restricted feeding treatment. Total activity was recorded by means of an actigraphy-based data logger (Actiwatch-Mini®). Our results showed that goats exhibited clear daily rhythms of activity in 12/12 L/D cycle, 12/12 D/L cycle and constant light, although they showed FAA prior the feeding time during the restricted feeding treatment. Goats were diurnal, with activity consistently beginning promptly following the onset of light. Even when the L/D cycle was delayed by 12 h on some days, to the daily rhythm was re-established. During the constant light period, the onset of activity was linked to the time of food administration. Our study evidences two factors for the rhythm of total locomotor activity in goats: light stimuli (photic) and food access (non photic), strongly coupled to permit organisms the adaptive temporal coordination of behaviour with stable and unstable environmental periodicities. [source] Roles of light and serotonin in the regulation of gastrin-releasing peptide and arginine vasopressin output in the hamster SCN circadian clockEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2010Jessica M. Francl Abstract Daily timing of the mammalian circadian clock of the suprachiasmatic nucleus (SCN) is regulated by photic input from the retina via the retinohypothalamic tract. This signaling is mediated by glutamate, which activates SCN retinorecipient units communicating to pacemaker cells in part through the release of gastrin-releasing peptide (GRP). Efferent signaling from the SCN involves another SCN-containing peptide, arginine vasopressin (AVP). Little is known regarding the mechanisms regulating these peptides, as literature on in vivo peptide release in the SCN is sparse. Here, microdialysis,radioimmunoassay procedures were used to characterize mechanisms controlling GRP and AVP release in the hamster SCN. In animals housed under a 14/10-h light,dark cycle both peptides exhibited daily fluctuations of release, with levels increasing during the morning to peak around midday. Under constant darkness, this pattern persisted for AVP, but rhythmicity was altered for GRP, characterized by a broad plateau throughout the subjective night and early subjective day. Neuronal release of the peptides was confirmed by their suppression with reverse-microdialysis perfusion of calcium blockers and stimulation with depolarizing agents. Reverse-microdialysis perfusion with the 5-HT1A,7 agonist 8-OH-DPAT ((±)-8-hydroxydipropylaminotetralin hydrobromide) during the day significantly suppressed GRP but had little effect on AVP. Also, perfusion with the glutamate agonist NMDA, or exposure to light at night, increased GRP but did not affect AVP. These analyses reveal distinct daily rhythms of SCN peptidergic activity, with GRP but not AVP release attenuated by serotonergic activation that inhibits photic phase-resetting, and activated by glutamatergic and photic stimulation that mediate this phase-resetting. [source] Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain?EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2007Clare Guilding Abstract The suprachiasmatic nucleus of the hypothalamus (SCN) is the master circadian pacemaker or clock in the mammalian brain. Canonical theory holds that the output from this single, dominant clock is responsible for driving most daily rhythms in physiology and behaviour. However, important recent findings challenge this uniclock model and reveal clock-like activities in many neural and non-neural tissues. Thus, in addition to the SCN, a number of areas of the mammalian brain including the olfactory bulb, amygdala, lateral habenula and a variety of nuclei in the hypothalamus, express circadian rhythms in core clock gene expression, hormone output and electrical activity. This review examines the evidence for extra-SCN circadian oscillators in the mammalian brain and highlights some of the essential properties and key differences between brain oscillators. The demonstration of neural pacemakers outside the SCN has wide-ranging implications for models of the circadian system at a whole-organism level. [source] Diurnal rhythms in neurohypophysial functionEXPERIMENTAL PHYSIOLOGY, Issue 2000Mary L. Forsling The neurohypophysial hormones oxytocin and vasopressin show daily rhythms of secretion with elevated hormone release during the hours of sleep. This pattern can be modulated by ovarian steroids and alters with age. The pattern appears to be due in part to the nocturnal increase in melatonin secretion, which stimulates hormone release in man, while being inhibitory in the rat. Pinealectomy alters both the 24 h pattern of neurohypophysial hormone release in the rat and the firing rate of magnocellular supraoptic nucleus neurones. There is also a reduced hormone release in response to hypovolaemia and raised plasma sodium concentration compared to sham operated animals, with a smaller increase in neuronal activity, as determined by immediate-early gene expression. The normal responses can be restored by nocturnal administration of melatonin. Melatonin also influences the neurohypophysial hormone response in the human to known stimuli of release, such as raised plasma osmolality, exercise and insulin-induced hypoglycaemia. Recent studies have revealed that not only does the release of vasopressin and oxytocin vary over each 24 h, but the respective renal and pregnant uterine responses also show diurnal variations. [source] Temporal coupling of cyclic AMP and Ca2+/calmodulin-stimulated adenylyl cyclase to the circadian clock in chick retinal photoreceptor cellsJOURNAL OF NEUROCHEMISTRY, Issue 4 2006Shyam S. Chaurasia Abstract cAMP signaling pathways play crucial roles in photoreceptor cells and other retinal cell types. Previous studies demonstrated a circadian rhythm of cAMP level in chick photoreceptor cell cultures that drives the rhythm of activity of the melatonin synthesizing enzyme arylalkylamine N -acetyltransferase and the rhythm of affinity of the cyclic nucleotide-gated channel for cGMP. Here, we report that the photoreceptor circadian clock generates a rhythm in Ca2+/calmodulin-stimulated adenylyl cyclase activity, which accounts for the temporal changes in the cAMP levels in the photoreceptors. The circadian rhythm of cAMP in photoreceptor cell cultures is abolished by treatment with the l -type Ca2+ channel antagonist nitrendipine, while the Ca2+ channel agonist, Bay K 8644, increased cAMP levels with continued circadian rhythmicity in constant darkness. These results indicate that the circadian rhythm of cAMP is dependent, in part, on Ca2+ influx. Photoreceptor cell cultures exhibit a circadian rhythm in Ca2+/calmodulin-stimulated adenylyl cyclase enzyme activity with high levels at night and low levels during the day, correlating with the temporal changes of cAMP in these cells. Transcripts encoding two of the Ca2+/calmodulin-stimulated adenylyl cyclases, type 1 and type 8 (Adcy1 and Adcy8), displayed significant daily rhythms of mRNA expression under a light,dark cycle, but only the Adcy1 transcript rhythm persisted in constant darkness. Similar rhythms of Adcy1 mRNA level and Ca2+/calmodulin-stimulated adenylyl cyclase activity were observed in retinas of 2-week-old chickens. These results indicate that a circadian clock controls the expression of Adcy1 mRNA and Ca2+/calmodulin-stimulated adenylyl cyclase activity; and calcium influx into these cells gates the circadian rhythm of cAMP, a key component in the regulation of photoreceptor function. [source] Clock Gene Protein mPER1 is Rhythmically Synthesized and Under cAMP Control in the Mouse Pineal OrganJOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2001C. Von Gall The mammalian clock gene Per1 is an important element of endogenous oscillators that control daily rhythms in central and peripheral tissues. Although such autonomous clock function is lost in the mammalian pineal gland during evolution, mPer1 mRNA and mPER1 protein were found to be strongly elevated in the mouse pineal organ during the dark period compared to daytime values. In vitro studies showed that mPer1 mRNA and mPER1 protein in mouse pineal gland are induced following the activation of a signalling pathway of fundamental importance for pineal physiology, the norepinephrine/cAMP/phosphoCREB cascade. mPER1 may function in the mouse pineal gland as a time-measuring molecule to participate in regulating rhythmic cellular responses in vivo. [source] Flight activity of three Spodoptera spp., Spodoptera litura, S. exigua and S. depravata, measured by flight actographPHYSIOLOGICAL ENTOMOLOGY, Issue 2 2000Osamu Saito Summary Flight activities of three Spodoptera species were measured by the aid of flight actograph: S. litura and S. exuiga being regarded as long-distance migratory insects, and S. depravata being non-migratory and diapause-inducible species. In all species tested, flight activities were observed only in scotophase, males showed far higher activities than females, being several times higher at the time of maximum flight activity, which was observed within 2 days after adult eclosion. Total flight activity in males was highest in S. litura, some being flyable even 12 days after eclosion, followed by S. exigua being one-third compared to the former species, while in S. depravata flight activity was nearly half of that of the second species and most ceased to fly within a week after eclosion. There occurred species-specific daily rhythms in flight activity during respective scotophase. In S. litura, both females and males exhibited a peak of flight activity shortly after light-off and exhibited the second flight activity in late scotophase, the females slightly but the males more actively compared to early scotophase. In S. exigua, both sexes did not respond to light-off, did not show a peak of flight activity in early scotophase, whereas males, but not females prominently increased activity toward the end of scotophase. In S. depravata, both sexes exhibited a peak of flight activity in early scotophase, and the males revived flight activity, being maximum shortly before light-on, but the females did not show a clear rhythm in flight activity. These features observed in flight activity were discussed in relation with migratory capability. [source] Photic and non-photic entrainment on daily rhythm of locomotor activity in goatsANIMAL SCIENCE JOURNAL, Issue 1 2010Claudia GIANNETTO ABSTRACT We studied the photic (L/D cycle) and non-photic (restricted feeding) entrainment on the patterns of daily rhythm of total locomotor activity in goats. Six female Maltese goats were subjected to three different artificial L/D cycles: 12/12 L/D, 12/12 D/L and constant light. During the 12/12 L/D and 12/12 D/L, food and water were available ad libitum. During constant light, animals were subjected to a restricted feeding treatment. Total activity was recorded by means of an actigraphy-based data logger (Actiwatch-Mini®). Our results showed that goats exhibited clear daily rhythms of activity in 12/12 L/D cycle, 12/12 D/L cycle and constant light, although they showed FAA prior the feeding time during the restricted feeding treatment. Goats were diurnal, with activity consistently beginning promptly following the onset of light. Even when the L/D cycle was delayed by 12 h on some days, to the daily rhythm was re-established. During the constant light period, the onset of activity was linked to the time of food administration. Our study evidences two factors for the rhythm of total locomotor activity in goats: light stimuli (photic) and food access (non photic), strongly coupled to permit organisms the adaptive temporal coordination of behaviour with stable and unstable environmental periodicities. [source] |