Daily Changes (daily + change)

Distribution by Scientific Domains


Selected Abstracts


A ,polarisation sun-dial' dictates the optimal time of day for dispersal by flying aquatic insects

FRESHWATER BIOLOGY, Issue 7 2006
ZOLTÁN CSABAI
Summary 1. Daily changes in the flight activity of aquatic insects have been investigated in only a few water beetles and bugs. The diel flight periodicity of aquatic insects and the environmental factors governing it are poorly understood. 2. We found that primary aquatic insects belonging to 99 taxa (78 Coleoptera, 21 Heteroptera) fly predominantly in mid-morning, and/or around noon and/or at nightfall. There appears to be at least four different types of diurnal flight activity rhythm in aquatic insects, characterised by peak(s): (i) in mid-morning; (ii) in the evening; (iii) both in mid-morning and the evening; (iv) around noon and again in the evening. These activity maxima are quite general and cannot be explained exclusively by daily fluctuations of air temperature, humidity, wind speed and risks of predation, which are all somewhat stochastic. 3. We found experimental evidence that the proportion (%) P(,) of reflecting surfaces detectable polarotactically as ,water' is always maximal at the lowest (dawn and dusk) and highest (noon) angles of solar elevation (,) for dark reflectors while P(,) is maximal at dawn and dusk (low solar elevations) for bright reflectors under clear or partly cloudy skies. 4. From the temporal coincidence between peaks in the diel flight activity of primary aquatic insects and the polarotactic detectability P(,) of water surfaces we conclude that the optimal times of day for aquatic insects to disperse are the periods of low and high solar elevations ,. The , -dependent reflection,polarisation patterns, combined with an appropriate air temperature, clearly explain why polarotactic aquatic insects disperse to new habitats in mid-morning, and/or around noon and/or at dusk. We call this phenomenon the ,polarisation sun-dial' of dispersing aquatic insects. [source]


Increasing CO2 from subambient to elevated concentrations increases grassland respiration per unit of net carbon fixation

GLOBAL CHANGE BIOLOGY, Issue 8 2006
H. WAYNE POLLEY
Abstract Respiration (carbon efflux) by terrestrial ecosystems is a major component of the global carbon (C) cycle, but the response of C efflux to atmospheric CO2 enrichment remains uncertain. Respiration may respond directly to an increase in the availability of C substrates at high CO2, but also may be affected indirectly by a CO2 -mediated alteration in the amount by which respiration changes per unit of change in temperature or C uptake (sensitivity of respiration to temperature or C uptake). We measured CO2 fluxes continuously during the final 2 years of a 4-year experiment on C3/C4 grassland that was exposed to a 200,560 ,mol mol,1 CO2 gradient. Flux measurements were used to determine whether CO2 treatment affected nighttime respiration rates and the response of ecosystem respiration to seasonal changes in net C uptake and air temperature. Increasing CO2 from subambient to elevated concentrations stimulated grassland respiration at night by increasing the net amount of C fixed during daylight and by increasing either the sensitivity of C efflux to daily changes in C fixation or the respiration rate in the absence of C uptake (basal ecosystem respiration rate). These latter two changes contributed to a 30,47% increase in the ratio of nighttime respiration to daytime net C influx as CO2 increased from subamient to elevated concentrations. Daily changes in net C uptake were highly correlated with variation in temperature, meaning that the shared contribution of C uptake and temperature in explaining variance in respiration rates was large. Statistically controlling for collinearity between temperature and C uptake reduced the effect of a given change in C influx on respiration. Conversely, CO2 treatment did not affect the response of grassland respiration to seasonal variation in temperature. Elevating CO2 concentration increased grassland respiration rates by increasing both net C input and respiration per unit of C input. A better understanding of how C efflux varies with substrate supply thus may be required to accurately assess the C balance of terrestrial ecosystems. [source]


Treatment of symptomatic diabetic polyneuropathy with the antioxidant ,-lipoic acid: a meta-analysis

DIABETIC MEDICINE, Issue 2 2004
D. Ziegler
Abstract Aims To determine the efficacy and safety of 600 mg of ,-lipoic acid given intravenously over 3 weeks in diabetic patients with symptomatic polyneuropathy. Methods We searched the database of VIATRIS GmbH, Frankfurt, Germany, for clinical trials of ,-lipoic acid according to the following prerequisites: randomized, double-masked, placebo-controlled, parallel-group trial using ,-lipoic acid infusions of 600 mg i.v. per day for 3 weeks, except for weekends, in diabetic patients with positive sensory symptoms of polyneuropathy which were scored by the Total Symptom Score (TSS) in the feet on a daily basis. Four trials (ALADIN I, ALADIN III, SYDNEY, NATHAN II) comprised n = 1258 patients (,-lipoic acid n = 716; placebo n = 542) met these eligibility criteria and were included in a meta-analysis based on the intention-to-treat principle. Primary analysis involved a comparison of the differences in TSS from baseline to the end of i.v. Treatment between the groups treated with ,-lipoic acid or placebo. Secondary analyses included daily changes in TSS, responder rates (, 50% improvement in TSS), individual TSS components, Neuropathy Impairment Score (NIS), NIS of the lower limbs (NIS-LL), individual NIS-LL components, and the rates of adverse events. Results After 3 weeks the relative difference in favour of ,-lipoic acid vs. placebo was 24.1% (13.5, 33.4) (geometric mean with 95% confidence interval) for TSS and 16.0% (5.7, 25.2) for NIS-LL. The responder rates were 52.7% in patients treated with ,-lipoic acid and 36.9% in those on placebo (P < 0.05). On a daily basis there was a continuous increase in the magnitude of TSS improvement in favour of ,-lipoic acid vs. placebo which was noted first after 8 days of treatment. Among the individual components of the TSS, pain, burning, and numbness decreased in favour of ,-lipoic acid compared with placebo, while among the NIS-LL components pin-prick and touch-pressure sensation as well as ankle reflexes were improved in favour of ,-lipoic acid after 3 weeks. The rates of adverse events did not differ between the groups. Conclusions The results of this meta-analysis provide evidence that treatment with ,-lipoic acid (600 mg/day i.v.) over 3 weeks is safe and significantly improves both positive neuropathic symptoms and neuropathic deficits to a clinically meaningful degree in diabetic patients with symptomatic polyneuropathy. Diabet. Med. 21, 114,121 (2004) [source]


Thermal habitat of striped bass (Morone saxatilis) in coastal waters of northern Massachusetts, USA, during summer

FISHERIES OCEANOGRAPHY, Issue 5 2010
GARY A. NELSON
Abstract Striped bass, Morone saxatilis, were captured and released with temperature-measuring data storage tags in Salem Sound, Massachusetts, to collect data on their thermal preferences in coastal and marine waters and to identify environmental factors that may influence temperatures experienced during their summer residence. Striped bass recaptured during summer of 2006 (21 of 151 releases) experienced a wide range of temperatures (6.5,28.0°C) while at-large for 1,53 days. Overall mean temperature and standard deviation selected by striped bass recaptured in Salem Sound during the longest commonly-shared duration of time (3,12 July) were 17.8 and 3.57°C, respectively. Comparison of temperature data between fish and 13 vertical arrays in Salem Sound revealed that striped bass experienced higher and more variable temperatures, and that daily changes in temperature actually experienced were unrelated to daily changes in surrounding ambient temperature. Regular cyclical changes in temperature of all striped bass and vertical arrays were identified as influences of the local tide, which contributed about a 2°C change in temperature, on average, over the complete cycle. Most striped bass appeared to limit their activities to depths shallower than the lower limit of the thermocline, above which temperatures generally exceed 9.0°C in Salem Sound. Therefore, it is likely that the vertical distribution of striped bass is restricted by the low temperatures below this depth. An implication of this finding is that the spatial distribution of striped bass may be defined coarsely by knowledge of the distribution of temperature in coastal areas. [source]


Increasing CO2 from subambient to elevated concentrations increases grassland respiration per unit of net carbon fixation

GLOBAL CHANGE BIOLOGY, Issue 8 2006
H. WAYNE POLLEY
Abstract Respiration (carbon efflux) by terrestrial ecosystems is a major component of the global carbon (C) cycle, but the response of C efflux to atmospheric CO2 enrichment remains uncertain. Respiration may respond directly to an increase in the availability of C substrates at high CO2, but also may be affected indirectly by a CO2 -mediated alteration in the amount by which respiration changes per unit of change in temperature or C uptake (sensitivity of respiration to temperature or C uptake). We measured CO2 fluxes continuously during the final 2 years of a 4-year experiment on C3/C4 grassland that was exposed to a 200,560 ,mol mol,1 CO2 gradient. Flux measurements were used to determine whether CO2 treatment affected nighttime respiration rates and the response of ecosystem respiration to seasonal changes in net C uptake and air temperature. Increasing CO2 from subambient to elevated concentrations stimulated grassland respiration at night by increasing the net amount of C fixed during daylight and by increasing either the sensitivity of C efflux to daily changes in C fixation or the respiration rate in the absence of C uptake (basal ecosystem respiration rate). These latter two changes contributed to a 30,47% increase in the ratio of nighttime respiration to daytime net C influx as CO2 increased from subamient to elevated concentrations. Daily changes in net C uptake were highly correlated with variation in temperature, meaning that the shared contribution of C uptake and temperature in explaining variance in respiration rates was large. Statistically controlling for collinearity between temperature and C uptake reduced the effect of a given change in C influx on respiration. Conversely, CO2 treatment did not affect the response of grassland respiration to seasonal variation in temperature. Elevating CO2 concentration increased grassland respiration rates by increasing both net C input and respiration per unit of C input. A better understanding of how C efflux varies with substrate supply thus may be required to accurately assess the C balance of terrestrial ecosystems. [source]


Simulating pan-Arctic runoff with a macro-scale terrestrial water balance model

HYDROLOGICAL PROCESSES, Issue 13 2003
Michael A. Rawlins
Abstract A terrestrial hydrological model, developed to simulate the high-latitude water cycle, is described, along with comparisons with observed data across the pan-Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time series of precipitation and air temperature provide the primary inputs used to derive simulated runoff at a grid resolution of 25 km across the pan-Arctic. The pan-Arctic water balance model (P/WBM) includes a simple scheme for simulating daily changes in soil frozen and liquid water amounts, with the thaw,freeze model (TFM) driven by air temperature, modelled soil moisture content, and physiographic data. Climate time series (precipitation and air temperature) are from the National Centers for Environmental Prediction (NCEP) reanalysis project for the period 1980,2001. P/WBM-generated maximum summer active-layer thickness estimates differ from a set of observed data by an average of 12 cm at 27 sites in Alaska, with many of the differences within the variability (1,) seen in field samples. Simulated long-term annual runoffs are in the range 100 to 400 mm year,1. The highest runoffs are found across northeastern Canada, southern Alaska, and Norway, and lower estimates are noted along the highest latitudes of the terrestrial Arctic in North America and Asia. Good agreement exists between simulated and observed long-term seasonal (winter, spring, summer,fall) runoff to the ten Arctic sea basins (r = 0·84). Model water budgets are most sensitive to changes in precipitation and air temperature, whereas less affect is noted when other model parameters are altered. Increasing daily precipitation by 25% amplifies annual runoff by 50 to 80% for the largest Arctic drainage basins. Ignoring soil ice by eliminating the TFM sub-model leads to runoffs that are 7 to 27% lower than the control run. The results of these model sensitivity experiments, along with other uncertainties in both observed validation data and model inputs, emphasize the need to develop improved spatial data sets of key geophysical quantities (particularly climate time series) to estimate terrestrial Arctic hydrological budgets better. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Daily variation in the concentration of 5-methoxytryptophol and melatonin in the duck pineal gland and plasma

JOURNAL OF PINEAL RESEARCH, Issue 4 2002
Jolanta B. Zawilska
The duck pineal gland rhythmically produces two 5-methoxyindole compounds, i.e. 5-methoxytryptophol and melatonin. 5-Methoxytryptophol levels are low at night and high during the day, while melatonin concentrations are high at night and low during the day. The melatonin rhythm reflects oscillations in the activity of serotonin N -acetyltransferase (AA-NAT; a penultimate and key regulatory enzyme in the melatonin biosynthetic pathway). The activity of hydroxyindole- O -methyltransferase (HIOMT; an enzyme involved in the synthesis of both 5-methoxytryptophol and melatonin) does not exhibit any significant rhythmic changes throughout the 24-hr period. Plasma levels of melatonin exhibited daily changes that were parallel to fluctuations in pineal melatonin content. Although plasma concentrations of 5-methoxytryptophol were low in ducks, they showed daily variations. The mean 5-methoxytryptophol concentration between zeitgeber time 9 (ZT9) and ZT15 was 2.4-times higher than the mean value for samples collected between ZT18 and ZT3. These findings indicate that in the duck the pineal production of 5-methoxytryptophol and melatonin may be inversely correlated. [source]


Melatonin disrupts circadian rhythms of glutamate and GABA in the neostriatum of the awake rat: a microdialysis study

JOURNAL OF PINEAL RESEARCH, Issue 4 2000
B. Marquez de Prado
The purpose of this study was to investigate possible circadian changes in extracellular concentrations of glutamate (GLU) and ,-aminobutyric acid (GABA), and the influence of melatonin on the levels of these neurotransmitters in the neostriatum of awake rats using in vivo microdialysis. At the same time, the concentrations of the amino acids taurine (TAU), glutamine (GLN) and arginine (ARG), as well as dopamine (DA) and its metabolites 3, 4-dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA), were measured in the extracellular fluid. When dialysates were collected over a 24-hr period (6 hr dark, 12 hr light, 6 hr dark), both GLU and GABA, without the infusion of melatonin, exhibited statistically significant rhythms, with higher levels of these constituents during the dark and lower levels during the day. Perfusion with melatonin (for 19 consecutive hours) prevented the daytime reductions in both GLU and GABA. Of the amino acids measured in the dialysates collected from the neostriatum of non-perfused rats, only ARG exhibited a significant change during the light:dark cycle; again, lowest concentrations were measured during the day. While melatonin perfusion did not statistically significantly influence neostriatal levels of TAU and ARG, GLN levels continued to drop during the infusion of the indoleamine. Dialysate concentrations of DA, DOPAC and HVA exhibited circadian rhythms which were not influenced by melatonin perfusion. The findings indicate there are differential effects of melatonin on extracellular neurotransmitter concentrations in the neostriatum of the awake rat. The results also suggest that the day:night variations in GLU and GABA may relate to daily changes in endogenous melatonin production, while DA and its metabolites are minimally influenced by this secretory product. [source]


Empirical modelling of the DEM/USD and DEM/JPY foreign exchange rate: Structural shifts in GARCH-models and their implications

APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, Issue 1 2002
Helmut Herwartz
Abstract We analyse daily changes of two log foreign exchange (FX) rates involving the Deutsche Mark (DEM) for the period 1975,1998, namely FX-rates measured against the US dollar (USD) and the Japanese yen (JPY). To account for volatility clustering we fit a GARCH(1,1)-model with leptokurtic innovations. Its parameters are not stable over the sample period and two separate variance regimes are selected for both exchange rate series. The identified points of structural change are close to a change of the monetary policies in the US and Japan, the latter of which is followed by a long period of decreasing asset prices. Having identified subperiods of homogeneous volatility dynamics we concentrate on stylized facts to distinguish these volatility regimes. The bottom level of estimated volatility turns out be considerably higher during the second part of the sample period for both exchange rates. A similar result holds for the average level of volatility and for implied volatility of heavily traded at the money options. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Synchronization of the Fungal and the Plant Circadian Clock by Light

CHEMBIOCHEM, Issue 16 2008
László Kozma-Bognár
Abstract Circadian clocks are endogenous time keeping devices that provide temporal control of physiology in accordance with predicted daily changes in the environment. Photoentrainment is the process that synchronizes circadian clocks-and thereby clock-controlled gene expression and physiology-to the environmental day/night cycles. Light is primarily detected by specialized photoreceptors that are coupled,directly or through other signaling components,to the rhythm-generating oscillator. As a consequence, the expression, the activity or the stability of oscillator components are altered, resulting in a change of phase and/or pace of the oscillator. In this review our present knowledge about light absorption/transduction and light-induced modifications of oscillator components in Neurospora crassa and Arabidopsis thaliana is summarized. These systems provide a basis for understanding the molecular mechanisms of entrainment in the fungal and plant circadian systems. [source]