Damped Oscillations (damped + oscillation)

Distribution by Scientific Domains


Selected Abstracts


Damped oscillations in the adaptive response of the iron homeostasis network of E. coli

MOLECULAR MICROBIOLOGY, Issue 2 2010
Amnon Amir
Summary Living organisms often have to adapt to sudden environmental changes and reach homeostasis. To achieve adaptation, cells deploy motifs such as feedback in their genetic networks, endowing the cellular response with desirable properties. We studied the iron homeostasis network of E. coli, which employs feedback loops to regulate iron usage and uptake, while maintaining intracellular iron at non-toxic levels. Using fluorescence reporters for iron-dependent promoters in bulk and microfluidics-based, single-cell experiments, we show that E. coli cells exhibit damped oscillations in gene expression, following sudden reductions in external iron levels. The oscillations, lasting for several generations, are independent of position along the cell cycle. Experiments with mutants in network components demonstrate the involvement of iron uptake in the oscillations. Our findings suggest that the response is driven by intracellular iron oscillations large enough to induce nearly full network activation/deactivation. We propose a mathematical model based on a negative feedback loop closed by rapid iron uptake, and including iron usage and storage, which captures the main features of the observed behaviour. Taken together, our results shed light on the control of iron metabolism in bacteria and suggest that the oscillations represent a compromise between the requirements of stability and speed of response. [source]


Complex responses to culture conditions in Pseudomonas syringae pv. tomato DC3000 continuous cultures: The role of iron in cell growth and virulence factor induction

BIOTECHNOLOGY & BIOENGINEERING, Issue 5 2010
Beum Jun Kim
Abstract The growth of a model plant pathogen, Pseudomonas syringae pv. tomato DC3000, was investigated using a chemostat culture system to examine environmentally regulated responses. Using minimal medium with iron as the limiting nutrient, four different types of responses were obtained in a customized continuous culture system: (1) stable steady state, (2) damped oscillation, (3) normal washout due to high dilution rates exceeding the maximum growth rate, and (4) washout at low dilution rates due to negative growth rates. The type of response was determined by a combination of initial cell mass and dilution rate. Stable steady states were obtained with dilution rates ranging from 0.059 to 0.086,h,1 with an initial cell mass of less than 0.6,OD600. Damped oscillations and negative growth rates are unusual observations for bacterial systems. We have observed these responses at values of initial cell mass of 0.9,OD600 or higher, or at low dilution rates (<0.05,h,1) irrespectively of initial cell mass. This response suggests complex dynamics including the possibility of multiple steady states. Iron, which was reported earlier as a growth limiting nutrient in a widely used minimal medium, enhances both growth and virulence factor induction in iron-supplemented cultures compared to unsupplemented controls. Intracellular iron concentration is correlated to the early induction (6,h) of virulence factors in both batch and chemostat cultures. A reduction in aconitase activity (a TCA cycle enzyme) and ATP levels in iron-limited chemostat cultures was observed compared to iron-supplemented chemostat cultures, indicating that iron affects central metabolic pathways. We conclude that DC3000 cultures are particularly dependent on the environment and iron is likely a key nutrient in determining physiology. Biotechnol. Bioeng. 2010;105: 955,964. © 2009 Wiley Periodicals, Inc. [source]


The baroreflex is counteracted by autoregulation, thereby preventing circulatory instability

EXPERIMENTAL PHYSIOLOGY, Issue 4 2004
Roberto Burattini
The aims of this study were (a) to apply in the animal with intact baroreflex a two-point method for estimation of overall, effective open-loop gain, G0e, which results from the combined action of baroregulation and total systemic autoregulation on peripheral resistance; (b) to predict specific baroreflex gain by correcting the effective gain for the autoregulation gain; and (c) to discuss why the effective gain is usually as low as 1,2 units. G0e was estimated from two measurements of both cardiac output, Q, and mean systemic arterial pressure, P: one in the reference state (set-point) and the other in a steady-state reached 1,3 min after a small cardiac output perturbation. In anaesthetized cats and dogs a cardiac output perturbation was accomplished by partial occlusion of the inferior vena cava and by cardiac pacing, respectively. Average (±s.e.m.) estimates of G0e were 1.4 ± 0.2 (n= 8) in the cat and 1.5 ± 0.4 (n= 5) in the dog. The specific baroreflex open-loop gain, G0b, found after correction for total systemic autoregulation, was 3.3 ± 0.4 in the cat and 2.8 ± 0.8 in the dog. A model-based analysis showed that, with G0e as low as 1.4, the closed-loop response of P to a stepwise perturbation in Q results in damped oscillations that disappear in about 1 min. The amplitude and duration of these oscillations, which have a frequency of about 0.1 Hz, increase with increasing G0e and cause instability when G0e is about 3. We conclude that autoregulation reduces the effectiveness of baroreflex gain by about 55%, thereby preventing instability of blood pressure response. [source]


Optimal observability of sustained stochastic competitive inhibition oscillations at organellar volumes

FEBS JOURNAL, Issue 1 2006
Kevin L. Davis
When molecules are present in small numbers, such as is frequently the case in cells, the usual assumptions leading to differential rate equations are invalid and it is necessary to use a stochastic description which takes into account the randomness of reactive encounters in solution. We display a very simple biochemical model, ordinary competitive inhibition with substrate inflow, which is only capable of damped oscillations in the deterministic mass-action rate equation limit, but which displays sustained oscillations in stochastic simulations. We define an observability parameter, which is essentially just the ratio of the amplitude of the oscillations to the mean value of the concentration. A maximum in the observability is seen as the volume is varied, a phenomenon we name system-size observability resonance by analogy with other types of stochastic resonance. For the parameters of this study, the maximum in the observability occurs at volumes similar to those of bacterial cells or of eukaryotic organelles. [source]


Damped oscillations in the adaptive response of the iron homeostasis network of E. coli

MOLECULAR MICROBIOLOGY, Issue 2 2010
Amnon Amir
Summary Living organisms often have to adapt to sudden environmental changes and reach homeostasis. To achieve adaptation, cells deploy motifs such as feedback in their genetic networks, endowing the cellular response with desirable properties. We studied the iron homeostasis network of E. coli, which employs feedback loops to regulate iron usage and uptake, while maintaining intracellular iron at non-toxic levels. Using fluorescence reporters for iron-dependent promoters in bulk and microfluidics-based, single-cell experiments, we show that E. coli cells exhibit damped oscillations in gene expression, following sudden reductions in external iron levels. The oscillations, lasting for several generations, are independent of position along the cell cycle. Experiments with mutants in network components demonstrate the involvement of iron uptake in the oscillations. Our findings suggest that the response is driven by intracellular iron oscillations large enough to induce nearly full network activation/deactivation. We propose a mathematical model based on a negative feedback loop closed by rapid iron uptake, and including iron usage and storage, which captures the main features of the observed behaviour. Taken together, our results shed light on the control of iron metabolism in bacteria and suggest that the oscillations represent a compromise between the requirements of stability and speed of response. [source]