Home About us Contact | |||
Dystrophin Complex (dystrophin + complex)
Selected AbstractsHGF induction of postsynaptic specializations at the neuromuscular junctionDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2006Raghavan Madhavan Abstract A critical event in the formation of vertebrate neuromuscular junctions (NMJs) is the postsynaptic clustering of acetylcholine receptors (AChRs) in muscle. AChR clustering is triggered by the activation of MuSK, a muscle-specific tyrosine kinase that is part of the functional receptor for agrin, a nerve-derived heparan sulfate proteoglycan (HSPG). At the NMJ, heparan sulfate (HS)-binding growth factors and their receptors are also localized but their involvement in postsynaptic signaling is poorly understood. In this study we found that hepatocyte growth factor (HGF), an HS-binding growth factor, surrounded muscle fibers and was localized at NMJs in rat muscle sections. In cultured Xenopus muscle cells, HGF was enriched at spontaneously occurring AChR clusters (hot spots), where HSPGs were also concentrated, and, following stimulation of muscle cells by agrin or cocultured neurons, HGF associated with newly formed AChR clusters. HGF presented locally to cultured muscle cells by latex beads induced new AChR clusters and dispersed AChR hot spots, and HGF beads also clustered phosphotyrosine, activated c-Met, and proteins of dystrophin complex; clustering of AChRs and associated proteins by HGF beads required actin polymerization. Lastly, although bath-applied HGF alone did not induce new AChR clusters, addition of HGF potentiated agrin-dependent AChR clustering in muscle. Our findings suggest that HGF promotes AChR clustering and synaptogenic signaling in muscle during NMJ development. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005 [source] Differential targeting of components of the dystrophin complex to the postsynaptic membraneEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2001Sophie Marchand Abstract Accumulating evidence points to the participation of dystroglycan in the clustering of nicotinic acetylcholine receptors at the neuromuscular junction [Côtéet al.. (1999) Nature Genet., 3, 338,342]. Dystroglycan is part of a multimolecular complex, either associated with dystrophin (the dystrophin-associated protein complex) at the sarcolemma or with utrophin (the utrophin-associated protein complex) at the neuromuscular junction. Understanding the assembly of this complex at the developing synapse led us to investigate, in Torpedo electrocyte, the intracellular routing and the targeting of several of its components, including dystroglycan, syntrophin, dystrophin and dystrobrevin. We previously demonstrated that acetylcholine receptors and rapsyn, the 43-kDa receptor-associated protein at the synapse, are cotargeted to the postsynaptic membrane via the exocytic pathway [Marchand et al.. (2000) J. Neurosci., 20, 521,528]. Using cell fractionation, immunopurification and immuno-electron microscope techniques, we show that ,-dystroglycan, an integral glycoprotein that constitutes the core of the dystrophin-associated protein complex localized at the innervated membrane, is transported together with acetylcholine receptor and rapsyn in post-Golgi vesicles en route to the postsynaptic membrane. Syntrophin, a peripheral cytoplasmic protein of the complex, associates initially with these exocytic vesicles. Conversely, dystrophin and dystrobrevin were absent from these post-Golgi vesicles and associate directly with the postsynaptic membrane. This study provides the first evidence for a separate targeting of the various components of the dystrophin-associated protein complex and a step-by-step assembly at the postsynaptic membrane. [source] Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complexJOURNAL OF NEUROCHEMISTRY, Issue 6 2008Grazia Paola Nicchia Abstract Altered aquaporin-4 (AQP4) expression has been reported in brain edema, tumors, muscular dystrophy, and neuromyelitis optica. However, the plasma membrane organization of AQP4 and its interaction with proteins such as the dystrophin-associated protein complex are not well understood. In this study, we used sucrose density gradient ultracentrifugation and 2D blue native/sodium dodecyl sulfate,polyacrylamide gel electrophoresis and showed the expression of several AQP4 multi-subunit complexes (pools) of different sizes, ranging from , 1 MDa to ,500 kDa and containing different ratios of the 30/32 kDa AQP4 isoforms, indicative of orthogonal arrays of particles of various sizes. A high molecular weight pool co-purified with dystrophin and ,-dystroglycan and was drastically reduced in the skeletal muscle of mdx3cv mice, which have no dystrophin. The number and size of the AQP4 pools were the same in the kidney where dystrophin is not expressed, suggesting the presence of dystrophin-like proteins for their expression. We found that AQP2 is expressed only in one major pool of ,500 kDa, indicating that the presence of different pools is a peculiarity of AQP4 rather than a widespread feature in the AQP family. Finally, in skeletal muscle caveolin-3 did not co-purify with any AQP4 pool, indicating the absence of interaction of the two proteins and confirming that caveolae and orthogonal arrays of particles are two independent plasma membrane microdomains. These results contribute to a better understanding of AQP4 membrane organization and raise the possibility that abnormal expression of specific AQP4 pools may be found in pathological states. [source] Association of neuronal nitric oxide synthase (nNOS) with ,1-syntrophin at the sarcolemmaMICROSCOPY RESEARCH AND TECHNIQUE, Issue 3 2001Yuko Miyagoe-Suzuki Abstract ,1-syntrophin is a PDZ-containing dystrophin-associated protein, expressed predominantly in striated muscle and brain. ,1-syntrophin null mice generated by gene targeting technique showed no overt muscular dystrophic phenotype. Though other dystrophin-associated proteins were localized at the sarcolemma, neuronal nitric oxide synthase (nNOS) was selectively lost from the membrane fraction but remained in the cytoplasm. Thus, the ,1-syntrophin null mice are useful in the elucidation of the functional importance of nNOS targeting at the sarcolemma. In addition, the mice would facilitate identification of other signaling molecules, which are targeted to dystrophin complex via interaction with ,1-syntrophin. Microsc. Res. Tech. 55:164,170, 2001. © 2001 Wiley-Liss, Inc. [source] |