Dynamic Exercise (dynamic + exercise)

Distribution by Scientific Domains


Selected Abstracts


Gadolinium inhibits group III but not group IV muscle afferent responses to dynamic exercise

THE JOURNAL OF PHYSIOLOGY, Issue 4 2009
Shawn G. Hayes
Dynamic exercise has been shown to stimulate rapidly both group III and IV muscle afferents. The often rapid (i.e. 2 s) onset latencies of the group IV afferents is particularly surprising because these unmyelinated afferents are thought to respond to the gradual accumulation of metabolites signalling a mismatch between blood/oxygen demand and supply in exercising muscles. One explanation for the rapid onset to exercise by group IV afferents is that they are mechanosensitive, a concept that has been supported by the finding that these afferents were stimulated by vasodilatation induced by injection of vasoactive drugs. We therefore examined in decerebrated cats the effect of gadolinium, a blocker of mechanogated channels, on the responses of group III and IV muscle afferents to dynamic exercise induced by electrical stimulation of the mesencephalic locomotor region. We found that gadolinium (10 mm; 1 ml) injected into the abdominal aorta had no significant effect (P > 0.05) on the responses of 11 group IV afferents to dynamic exercise. In contrast, gadolinium markedly attenuated the responses of 11 group III afferents to exercise (P < 0.05). Our findings suggest that group IV afferents are not responding to a mechanical stimulus during exercise. Instead their rapid response to dynamic exercise might be caused by a chemical substance whose concentration is directly proportional to blood flow, which increases in the skeletal muscles when they are dynamically exercising. [source]


Abnormal vascular reactivity at rest and exercise in obese boys

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 2 2009
L. Karpoff
Abstract Background, Obese children exhibit vascular disorders at rest depending on their pubertal status, degree of obesity, and level of insulin resistance. However, data regarding their vascular function during exercise remain scarce. The aims of the present study were to evaluate vascular morphology and function at rest, and lower limb blood flow during exercise, in prepubertal boys with mild-to-moderate obesity and in lean controls. Materials and methods, Twelve moderately obese prepubertal boys [Body Mass Index (BMI: 23·9 ± 2·6 kg m,2)] and thirteen controls (BMI:17·4 ± 1·8 kg m,2), matched for age (mean age: 11·6 ± 0·6 years) were recruited. We measured carotid intima-media thickness (IMT) and wall compliance and incremental elastic modulus, resting brachial flow-mediated dilation (FMD) and nitrate-dependent dilation (NDD), lower limb blood flow during local knee-extensor incremental and maximal exercise, body fat content (DEXA), blood pressure, blood lipids, insulin and glucose. Results, Compared to lean controls, obese boys had greater IMT (0·47 ± 0·06 vs. 0·42 ± 0·03 mm, P < 0·05) but lower FMD (4·6 ± 2·8 vs. 8·8 ± 3·2%, P < 0·01) in spite of similar maximal shear rate, without NDD differences. Lower limb blood flow (mL min,1·100 g,1) increased significantly from rest to maximal exercise in both groups, although obese children reached lower values than lean counterparts whatever the exercise intensity. Conclusions, Mild-to-moderate obesity in prepubertal boys without insulin resistance is associated with impaired endothelial function and blunted muscle perfusion response to local dynamic exercise without alteration of vascular smooth muscle reactivity. [source]


Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control

EXPERIMENTAL PHYSIOLOGY, Issue 9 2009
Lisete C. Michelini
It is now well established that brain plasticity is an inherent property not only of the developing but also of the adult brain. Numerous beneficial effects of exercise, including improved memory, cognitive function and neuroprotection, have been shown to involve an important neuroplastic component. However, whether major adaptive cardiovascular adjustments during exercise, needed to ensure proper blood perfusion of peripheral tissues, also require brain neuroplasticity, is presently unknown. This review will critically evaluate current knowledge on proposed mechanisms that are likely to underlie the continuous resetting of baroreflex control of heart rate during/after exercise and following exercise training. Accumulating evidence indicates that not only somatosensory afferents (conveyed by skeletal muscle receptors, baroreceptors and/or cardiopulmonary receptors) but also projections arising from central command neurons (in particular, peptidergic hypothalamic pre-autonomic neurons) converge into the nucleus tractus solitarii (NTS) in the dorsal brainstem, to co-ordinate complex cardiovascular adaptations during dynamic exercise. This review focuses in particular on a reciprocally interconnected network between the NTS and the hypothalamic paraventricular nucleus (PVN), which is proposed to act as a pivotal anatomical and functional substrate underlying integrative feedforward and feedback cardiovascular adjustments during exercise. Recent findings supporting neuroplastic adaptive changes within the NTS,PVN reciprocal network (e.g. remodelling of afferent inputs, structural and functional neuronal plasticity and changes in neurotransmitter content) will be discussed within the context of their role as important underlying cellular mechanisms supporting the tonic activation and improved efficacy of these central pathways in response to circulatory demand at rest and during exercise, both in sedentary and in trained individuals. We hope this review will stimulate more comprehensive studies aimed at understanding cellular and molecular mechanisms within CNS neuronal networks that contribute to exercise-induced neuroplasticity and cardiovascular adjustments. [source]


Gadolinium inhibits group III but not group IV muscle afferent responses to dynamic exercise

THE JOURNAL OF PHYSIOLOGY, Issue 4 2009
Shawn G. Hayes
Dynamic exercise has been shown to stimulate rapidly both group III and IV muscle afferents. The often rapid (i.e. 2 s) onset latencies of the group IV afferents is particularly surprising because these unmyelinated afferents are thought to respond to the gradual accumulation of metabolites signalling a mismatch between blood/oxygen demand and supply in exercising muscles. One explanation for the rapid onset to exercise by group IV afferents is that they are mechanosensitive, a concept that has been supported by the finding that these afferents were stimulated by vasodilatation induced by injection of vasoactive drugs. We therefore examined in decerebrated cats the effect of gadolinium, a blocker of mechanogated channels, on the responses of group III and IV muscle afferents to dynamic exercise induced by electrical stimulation of the mesencephalic locomotor region. We found that gadolinium (10 mm; 1 ml) injected into the abdominal aorta had no significant effect (P > 0.05) on the responses of 11 group IV afferents to dynamic exercise. In contrast, gadolinium markedly attenuated the responses of 11 group III afferents to exercise (P < 0.05). Our findings suggest that group IV afferents are not responding to a mechanical stimulus during exercise. Instead their rapid response to dynamic exercise might be caused by a chemical substance whose concentration is directly proportional to blood flow, which increases in the skeletal muscles when they are dynamically exercising. [source]


Cardiac Arrhythmias Triggered by Sudden and Dynamic Efforts

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 2 2010
Emanuel C. Furtado M.D.
Background: Some arrhythmias are triggered only during exercise. The aim of this study is to describe the frequency and type of arrhythmia induced by a standardized protocol of sudden and dynamic exercise, which tends to reflect routine situations of efforts (e.g., climbing stairs), and compare with those found on maximal cardiopulmonary exercise test (CPET). Methods: A total of 2329 subjects (1594 men) aged 9,91 years (mean 52 years, SD ± 16) were submitted to a standardized protocol of sudden and dynamic exercise (4-second exercise test [4sET]) prior to a CPET. A continuous digital electrocardiogram (ECG) was recorded during 4sET and CPET, and later reviewed and interpreted by the same physician (who supervised all the procedures). Results: A total of 1125 subjects (43%) had cardiac arrhythmias during one or both procedures. About 57% of the arrhythmias were supraventricular, but 47 subjects (2% of all subjects) presented more complex arrhythmias including 43 cases of nonsustained supraventricular tachycardia and four nonsustained ventricular tachycardia. While arrhythmias were more often exposed by the CPET (P < 0.01), in 221 cases (10% of the total sample) of arrhythmias they were only induced by 4sET; these included four cases of nonsustained supraventricular tachycardia. Conclusion: 4sET-induced arrhythmias tend to be simple and were always short-lasting. In some cases, ECG recording during 4sET showed arrhythmias that would not be induced by a progressive maximal exercise test. Different situations of exercise, sudden and short versus maximal and progressive, tend to generate different arrhythmic responses and possibly complementary clinical implications. Ann Noninvasive Electrocardiol 2010;15(2):151,156 [source]


Changes of QT dispersion in patients with coronary artery disease dependent on different methods of stress induction

CLINICAL CARDIOLOGY, Issue 3 2000
B. Hailer M.D.
Abstract Background: Episodes of stress-induced myocardial ischemia in patients with coronary artery disease (CAD) may cause increases of QT dispersion (QTd). Hypothesis: Aim of this study was to analyze the effect of increasing heart rates on QTd and to compare the effect of different methods of stress induction in patients with varying degrees of CAD when estimating QTd. Methods: We studied 58 patients, 22 with prior myocardial infarction (MI), 25 without MI or wall motion disturbances at rest, and 11 patients without evidence of CAD. Prior to coronary angiography, standard 12-lead ECGs were obtained at rest as well as during dynamic exercise and pharmacologic stress using arbutamine simultaneously with echocardiography. QTd was determined at each stress level by subtracting minimal from maximal QT interval duration. Results: QTd values at rest were not consistently higher in the patients with CAD. At maximal heart rate, QTd was statistically significantly higher in patients with CAD with a better discrimination between groups for pharmacologic stress (p < 0.005 for exercise, p < 0.0001 for arbutamine). Patients after MI had higher QTd values under all conditions than did the groups without MI. As in patients with CAD, the values of this group changed more radically as a result of pharmacologic stress. Conclusion: Patients with CAD can be identified on the basis of QTd under stress. These changes were not as marked in patients with MI as their rest values were already increased. Overall, drug-induced stress produced greater differences than dynamic exercise, suggesting that the ischemic threshold might be lower in the former. [source]