Dynamic Elements (dynamic + element)

Distribution by Scientific Domains


Selected Abstracts


Autoantigens in systemic autoimmunity: critical partner in pathogenesis

JOURNAL OF INTERNAL MEDICINE, Issue 6 2009
A. Rosen
Abstract. Understanding the mechanisms of human autoimmune rheumatic diseases presents a major challenge, due to marked complexity involving multiple domains, including genetics, environment and kinetics. In spite of this, the immune response in each of these diseases is largely specific, with distinct autoantibodies associated with different disease phenotypes. Defining the basis of such specificity will provide important insights into disease mechanism. Accumulating data suggest an interesting paradigm for antigen selection in autoimmunity, in which target tissue and immune effector pathways form a mutually reinforcing partnership. In this model, distinct autoantibody patterns in autoimmunity may be viewed as the integrated, amplified output of several interacting systems, including: (i) the specific target tissue, (ii) the immune effector pathways that modify antigen structure and cause tissue damage and dysfunction, and (iii) the homeostatic pathways activated in response to damage (e.g. regeneration/differentiation/cytokine effects). As unique antigen expression and structure may occur exclusively under these amplifying circumstances, it is useful to view the molecules targeted as ,neo-antigens', that is, antigens expressed under specific conditions, rather than ubiquitously. This model adds an important new dynamic element to selection of antigen targets in autoimmunity, and suggests that the amplifying loop will only be identified by studying the diseased target tissue in vivo. [source]


Tendon-defect and muscle-unloaded models for relating a rotator cuff tear to glenohumeral stability

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2000
Horng-Chaung Hsu
Rotator cuff tear and glenohumeral instability are closely related. Any tear may disturb muscle force generation due to pain inhibition. In addition, a full-thickness tear may foster instability by removing a structural element constraining the joint. It was hypothesized that the loss of both dynamic force and static constraint with a rotator cuff tear will affect glenohumeral stability. In a tendon-defect model, dynamic and static elements of the joint were sacrificed. In a muscle-unloaded model, only the dynamic element was removed. The location and size of the defect were also investigated. The effect on instability of a small tendon defect was less than that of muscle unloading, implying that a patient with a small tear would have less instability than a patient with weak or nonfunctioning supraspinatus and infraspinatus muscles. On the other hand, with a larger tear the defect had a greater effect than muscle-unloading because sectioning of the glenohumeral and coracohumeral ligaments was included in the model. Clinically, such a defect in the front is critical for anterior stability because it might insult the important anterior capsule ligamentous complex. Orthopaedic surgeons should pay attention, therefore, to the effect of possible associated lesions of static constraints based on the size and location of the tear in addition to the dynamic stabilizer. [source]


BqR-Tree: A Data Structure for Flights and Walkthroughs in Urban Scenes with Mobile Elements

COMPUTER GRAPHICS FORUM, Issue 6 2010
J.L. Pina
I.3.6 [Computer Graphics]: Graphics data structures and data types Abstract BqR-Tree, the data structure presented in this paper is an improved R-Tree data structure based on a quadtree spatial partitioning which improves the rendering speed of the usual R-trees when view-culling is implemented, especially in urban scenes. The city is split by means of a spatial quadtree partition and the block is adopted as the basic urban unit. One advantage of blocks is that they can be easily identified in any urban environment, regardless of the origins and structure of the input data. The aim of the structure is to accelerate the visualization of complex scenes containing not only static but dynamic elements. The usefulness of the structure has been tested with low structured data, which makes its application appropriate to almost all city data. The results of the tests show that when using the BqR-Tree structure to perform walkthroughs and flights, rendering times vastly improve in comparison to the data structures which have yielded best results to date, with average improvements of around 30%. [source]


Signature of the Baltic Ice Stream on Funen Island, Denmark during the Weichselian glaciation

BOREAS, Issue 1 2003
FLEMMING JØRGENSEN
Ice streams are major dynamic elements of modern ice sheets, and are believed to have significantly influenced the behaviour of past ice sheets. Funen Island exhibits a number of geomorphological and geological features indicative of a Late Weichselian ice stream, a land-based, terminal branch of the major Baltic Ice Stream that drained the Scandinavian Ice Sheet along the Baltic Sea depression. The ice stream in the study area operated during the Young Baltic Advance. Its track on Funen is characterized by a prominent drumlin field with long, attenuated drumlins consisting of till. The field has an arcuate shape indicating ice-flow deflection around the island's interior. Beneath the drumlin-forming till is a major erosional surface with a boulder pavement, the stones of which have heavily faceted and striated upper surfaces. Ploughing marks are found around the boulders. Exact correspondence of striations, till fabric and drumlin orientation indicates a remarkably consistent flow direction during ice streaming. We infer that fast ice flow was facilitated by basal water pressure elevated to the vicinity of the flotation point. The ice movement was by basal sliding and bed deformation under water pressure at the flotation level or slightly below it, respectively. Subglacial channels and eskers post-dating the drumlins mark a drainage phase that terminated the ice-stream activity close to the deglaciation. Identification of other ice streams in the Peribaltic area is essential for better understanding the dynamics of the land-based part of the Scandinavian Ice Sheet during the last glaciation. [source]


An insider's guide to the microtubule cytoskeleton of Giardia

CELLULAR MICROBIOLOGY, Issue 5 2010
Scott C. Dawson
Summary Giardia intestinalis is a zoonotic, parasitic protist with a complex microtubule cytoskeleton critical for motility, attachment, intracellular transport, cell division and transitioning between its two life cycle stages , the cyst and the trophozoite. This review focuses on the structures of the primary elements of the microtubule cytoskeleton and cytoskeletal dynamics throughout this complex giardial life cycle. The giardial cytoskeleton has both highly dynamic elements and more stable MT structures, including several novel structures like the ventral disc that change conformation via unknown mechanisms. While our knowledge of the giardial cytoskeleton is primarily cytological, the completed Giardia genome and recently developed reverse genetic tools affords an opportunity to uncover the mechanisms of Giardia's cytoskeletal dynamics. Fundamental areas of giardial cytoskeletal biology remain to be explored, including high resolution imaging and compositional characterization of cytoskeletal structures required for elucidating the molecular mechanisms of cytoskeletal functioning. [source]