Dynamic Characteristics (dynamic + characteristic)

Distribution by Scientific Domains
Distribution within Engineering


Selected Abstracts


Buckled Bridges Using Film Stress for Three-Dimensional Structures: Effects of Lateral Designs on Vertical Profiles and Dynamic Characteristics

IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 2 2010
Minoru Sasaki Member
Abstract Bridges buckled by film stress can generate a vertical displacement resulting in three-dimensional structures. We have demonstrated a micromirror lifted by buckled bridges and a vertical comb drive actuator. The structures show rounded profiles in a stable manner. The detailed profiles of the bridges and the lifted micromirrors are examined. The relations between the lateral design and its effect on the vertical profile and the dynamic characteristics are studied. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]


Dynamic characteristics of heart rate control by the autonomic nervous system in rats

EXPERIMENTAL PHYSIOLOGY, Issue 9 2010
Masaki Mizuno
We estimated the transfer function of autonomic heart rate (HR) control by using random binary sympathetic or vagal nerve stimulation in anaesthetized rats. The transfer function from sympathetic stimulation to HR response approximated a second-order, low-pass filter with a lag time (gain, 4.29 ± 1.55 beats min,1 Hz,1; natural frequency, 0.07 ± 0.03 Hz; damping coefficient, 1.96 ± 0.64; and lag time, 0.73 ± 0.12 s). The transfer function from vagal stimulation to HR response approximated a first-order, low-pass filter with a lag time (gain, 8.84 ± 4.51 beats min,1 Hz,1; corner frequency, 0.12 ± 0.06 Hz; and lag time, 0.12 ± 0.08 s). These results suggest that the dynamic characteristics of HR control by the autonomic nervous system in rats are similar to those of larger mammals. [source]


Dynamic characteristics of a PEM fuel cell system for individual houses

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 15 2006
S. ObaraArticle first published online: 1 AUG 200
Abstract The method of determination of the control variables for a system controller, which controls the electric power output of a solid-polymer-membrane (PEM) fuel cell system during electric power load fluctuations, was considered. The operation was clarified for the response characteristics of electric power generation for setting the control variables of proportional action and integral action considered to be the optimal for the system controller. The power load pattern of an individual house consists of loads usually moved up and down rapidly for a short time. Until now, there have been no examples showing the characteristics of the power generation efficiency of a system that follows a load pattern that moves up and down rapidly. Therefore, this paper investigates the relation of the control variables and power generation efficiency when adding change that simulates the load of a house to PEM fuel cell cogeneration. As a result, it was shown that an operation, minimally influenced by load fluctuations, can be performed by changing the control variables using the value of the electric power load of a system. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Investigating static and dynamic characteristics of electromechanical actuators (EMA) with MATLAB GUIs

COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, Issue 2 2010
Gursel Sefkat
Abstract This paper deals with the design of an electromechanical device considering some prescribed performance requirements, and static and dynamic analysis of this device are carried out. In studying the transient response of such a system, as part of dynamic analysis, two methods mostly used finite element method (FEM) and finite differences method (FDM). However, these methods need much CPU time. In this work, a computer simulator program is developed for an EMA. This technique is implemented in the MATLAB-Simulink environment and tested for different design tasks such as electromagnetic valves or electromechanical brakes etc. Furthermore, by using GUIDE tools within MATLAB, a simple useful and user-friendly GUI structure is developed to provide a visual approach to design and analysis process. © 2009 Wiley Periodicals, Inc. Comput Appl Eng Educ 18: 383,396, 2010; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20279 [source]


A Wavelet-Based Approach to Identifying Structural Modal Parameters from Seismic Response and Free Vibration Data

COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 6 2005
C. S. Huang
The wavelet transform with orthonormal wavelets is applied to the measured acceleration responses of a structural system, and to reconstruct the discrete equations of motion in various wavelet subspaces. The accuracy of this procedure is numerically confirmed; the effects of mother wavelet functions and noise on the ability to accurately estimate the dynamic characteristics are also investigated. The feasibility of the present procedure to elucidate real structures is demonstrated through processing the measured responses of steel frames in shaking table tests and the free vibration responses of a five-span arch bridge with a total length of 440 m. [source]


Probabilistic Approach for Nonlinear Modal Control of MDOF Structures Subjected to Multiple Excitations

COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 1 2005
Kyung-Won Min
For the modal control of the MDOF structure, a new eigenvalue assignment algorithm that modifies the dynamic characteristics of only the specific mode is proposed. For the probabilistic evaluation of the proposed nonlinear modal control, the joint probability density function (PDF) of the equivalent nonlinearly controlled single-degree-of-freedom (SDOF) system is obtained by the solution of the reduced Fokker,Planck equation for the equivalent nonlinear system. To overcome the difficulty in the application of the joint PDF to the MDOF structure controlled by the hybrid mass damper (HMD) system and subjected to multiple excitations, the equivalent damping ratio is proposed. The results of the analysis indicate that the proposed nonlinear modal control strategy is effective for the control of MDOF structures requiring a significantly smaller peak control force than the linear quadratic Gaussian (LQG) controller to produce a similar control performance level. [source]


Identification of Modal Combinations for Nonlinear Static Analysis of Building Structures

COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, Issue 4 2004
Sashi K. Kunnath
An increasingly popular analytical method to establish these demand values is a "pushover" analysis in which a model of the building structure is subjected to an invariant distribution of lateral forces. Although such an approach takes into consideration the redistribution of forces following yielding of sections, it does not incorporate the effects of varying dynamic characteristics during the inelastic response. Simple modal combination schemes are investigated in this article to indirectly account for higher mode effects. Because the modes that contribute to deformations may be different from the modes that contribute to forces, it is necessary to identify unique modal combinations that provide reliable estimates of both force and deformation demands. The proposed procedure is applied to typical moment frame buildings to assess the effectiveness of the methodology. It is shown that the envelope of demands obtained from a series of nonlinear static analysis using the proposed modal-combination-based lateral load patterns results in better estimation of inter-story drift, a critical parameter in seismic evaluation and design. [source]


A new approach of selecting real input ground motions for seismic design: The most unfavourable real seismic design ground motions

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2007
Chang-Hai Zhai
Abstract This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Shaking table model test on Shanghai World Financial Center Tower

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 4 2007
Xilin Lu
Abstract The height of 101-storey Shanghai World Financial Center Tower is 492m above ground making it possible the tallest building in the world when completed. Three parallel structural systems including mega-frame structure, reinforced concrete and braced steel services core and outrigger trusses, are combined to resist vertical and lateral loads. The building could be classified as a vertically irregular structure due to a number of stiffened and transfer stories in the building. Complexities related to structural system layout are mainly exhibited in the design of services core, mega-diagonals and outrigger trusses. According to Chinese Code, the height 190 m of the building clearly exceeds the stipulated maximum height of for a composite frame/reinforced concrete core building. The aspect ratio of height to width also exceeds the stipulated limit of 7 for seismic design intensity 7. A 1/50 scaled model is made and tested on shaking table under a series of one and two-dimensional base excitations with gradually increasing acceleration amplitudes. This paper presents the dynamic characteristics, the seismic responses and the failure mechanism of the structure. The test results demonstrate that the structural system is a good solution to withstand earthquakes. The inter-storey drift and the overall behaviour meet the requirements of Chinese Design Code. Furthermore, weak positions under seldom-occurred earthquakes of seismic design intensity 8 are found based on the visible damages on the testing model, and some corresponding suggestions are proposed for the engineering design of the structure under extremely strong earthquake. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Bench,shelf system dynamic characteristics and their effects on equipment and contents

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 13 2006
Tara C. Hutchinson
Abstract Economic losses during past earthquakes are strongly associated with damage and failure to nonstructural equipment and contents. Among the vast types of nonstructural elements, one important category, is scientific equipment in biological or chemical laboratories. These equipment are often mounted on heavy ceramic bench-tops of bench,shelf systems, which in turn may amplify the dynamic motions imposed. To investigate the seismic response of these types of systems, a series of shake table and field experiments were conducted considering different representative bench and shelf-mounted equipment and contents. Results from shake table experiments indicate that these equipment are generally sliding-dominated. In addition, the bench,shelf system is observed to be very stiff and when lightly loaded, has a fundamental frequency between 10 and 16 Hz. An approximate 50% reduction in the first and second fundamental frequencies is observed considering practical loading conditions. Insight into a broader range of system response is provided by conducting eigenvalue and time history analyses. Non-linear regression through the numerical data indicate acceleration amplification ratios , range from 2.6 to 1.4 and from 4.3 to 1.6, for fixed,fixed and pinned,pinned conditions, respectively. Both the experimental and numerical results support the importance of determining the potential dynamic amplification of motion in the context of accurately determining the maximum sliding displacement of support equipment and contents. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Seismic performance evaluation of steel arch bridges against major earthquakes.

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 14 2004
Part 1: dynamic analysis approach
Abstract In this study the inelastic behavior of steel arch bridges subjected to strong ground motions from major earthquakes is investigated by dynamic analyses of a typical steel arch bridge using a three-dimensional (3D) analytical model, since checking seismic performance against severe earthquakes is not usually performed when designing such kinds of bridge. The bridge considered is an upper-deck steel arch bridge having a reinforced concrete (RC) deck, steel I-section girders and steel arch ribs. The input ground motions are accelerograms which are modified ground motions based on the records from the 1995 Hyogoken-Nanbu earthquake. Both the longitudinal and transverse dynamic characteristics of the bridge are studied by investigation of time-history responses of the main parameters. It is found that seismic responses are small when subjected to the longitudinal excitation, but significantly large under the transverse ground motion due to plasticization formed in some segments such as arch rib ends and side pier bases where axial force levels are very high. Finally, a seismic performance evaluation method based on the response strain index is proposed for such steel bridge structures. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Improved design of sliding mode control for civil structures with saturation problem

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 11 2004
Sang-Hyun Lee
Abstract A systematic and improved design procedure for sliding mode control (SMC) of seismically excited civil structures with saturation problem is provided in this paper. In order to restrict the control force to a certain level, a procedure for determining the upper limits of the control forces for single or multiple control units is proposed based on the design response spectrum of external loads. Further, an efficient procedure using the LQR method for determining sliding surfaces appropriate for different controller types is provided through the parametric evaluation of the dynamic characteristics of sliding surfaces in terms of SMC controller performance. Finally, a systematic design procedure for SMC required to achieve a given performance level is provided and its effectiveness is verified by applying it to multi-degree-of-freedom (MDOF) systems. Copyright © 2004 John Wiley & Sons, Ltd. [source]


System identification of linear structures based on Hilbert,Huang spectral analysis.

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2003
Part 2: Complex modes
Abstract A method, based on the Hilbert,Huang spectral analysis, has been proposed by the authors to identify linear structures in which normal modes exist (i.e., real eigenvalues and eigenvectors). Frequently, all the eigenvalues and eigenvectors of linear structures are complex. In this paper, the method is extended further to identify general linear structures with complex modes using the free vibration response data polluted by noise. Measured response signals are first decomposed into modal responses using the method of Empirical Mode Decomposition with intermittency criteria. Each modal response contains the contribution of a complex conjugate pair of modes with a unique frequency and a damping ratio. Then, each modal response is decomposed in the frequency,time domain to yield instantaneous phase angle and amplitude using the Hilbert transform. Based on a single measurement of the impulse response time history at one appropriate location, the complex eigenvalues of the linear structure can be identified using a simple analysis procedure. When the response time histories are measured at all locations, the proposed methodology is capable of identifying the complex mode shapes as well as the mass, damping and stiffness matrices of the structure. The effectiveness and accuracy of the method presented are illustrated through numerical simulations. It is demonstrated that dynamic characteristics of linear structures with complex modes can be identified effectively using the proposed method. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Shake table tests on a mass eccentric model with base isolation

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 9 2003
Bijan Samali
Abstract A mass eccentric structure is usually more seismically vulnerable than its concentric counterpart because of the coupled torsional,translational response of such structures. In this work, dynamic characteristics and response of a five-storey benchmark model with moderate mass eccentricity were investigated using a shake table, simulating four different ground motions. The effectiveness of laminated rubber bearings (LRB) and lead-core rubber bearings (LCRB) in protecting eccentric structures was examined and evaluated in relation to translational and torsional responses of the benchmark model. It was observed that both translational and torsional responses were significantly reduced with the addition of either a LRB or LCRB isolated system regardless of the nature of ground motion input. The LRB were identified to be more effective than LCRB in reducing model relative displacements, the relative torsional angle as well as accelerations, and therefore provided a better protection of the superstructure and its contents. On the other hand, LCRB rendered a smaller torsional angle and absolute displacement of the base isolation system, hence a more stable structural system. Copyright © 2003 John Wiley & Sons, Ltd. [source]


A neural network approach for structural identification and diagnosis of a building from seismic response data

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2003
C. S. Huang
Abstract This work presents a novel procedure for identifying the dynamic characteristics of a building and diagnosing whether the building has been damaged by earthquakes, using a back-propagation neural network approach. The dynamic characteristics are directly evaluated from the weighting matrices of the neural network trained by observed acceleration responses and input base excitations. Whether the building is damaged under a large earthquake is assessed by comparing the modal parameters and responses for this large earthquake with those for a small earthquake that has not caused this building any damage. The feasibility of the approach is demonstrated through processing the dynamic responses of a five-storey steel frame, subjected to different strengths of the Kobe earthquake, in shaking table tests. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Closed-form solution for seismic response of adjacent buildings with linear quadratic Gaussian controllers

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2002
Y. L. Xu
Abstract Closed-form solution for seismic response of adjacent buildings connected by hydraulic actuators with linear quadratic Gaussian (LQG) controllers is presented in this paper. The equations of motion of actively controlled adjacent buildings against earthquake are first established. The complex modal superposition method is then used to determine dynamic characteristics, including modal damping ratio, of actively controlled adjacent buildings. The closed-form solution for seismic response of the system is finally derived in terms of the complex dynamic characteristics, the pseudo-excitation method and the residue theorem. By using the closed-form solution, extensive parametric studies can be carried out for the system of many degrees of freedom. The beneficial parameters of LQG controllers for achieving the maximum response reduction of both buildings using reasonable control forces can be identified. The effectiveness of LQG controllers for this particular application is evaluated in this study. The results show that for the adjacent buildings of different dynamic properties, if the parameters of LQG controllers are selected appropriately, the modal damping ratios of the system can be significantly increased and the seismic responses of both buildings can be considerably reduced. Copyright © 2001 John Wiley & Sons, Ltd. [source]


A reduced-order modeling technique for tall buildings with active tuned mass damper

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 3 2001
Zu-Qing Qu
Abstract It is impractical to install sensors on every floor of a tall building to measure the full state vector because of the large number of degrees of freedom. This makes it necessary to introduce reduced-order control. A kind of system reduction scheme (dynamic condensation method) is proposed in this paper. This method is iterative and Guyan condensation is looked upon as an initial approximation of the iteration. Since the reduced-order system is updated repeatedly until a desired one is obtained, the accuracy of the reduced-order system resulting from the proposed method is much higher than that obtained from the Guyan condensation method. Another advantage of the method is that the reduced-order system is defined in the subspace of the original physical space, which makes the state vectors have physical meaning. An eigenvalue shifting technique is applied to accelerate the convergence of iteration and to make the reduced system retain all the dynamic characteristics of the full system within a given frequency range. Two schemes to establish the reduced-order system by using the proposed method are also presented and discussed in this paper. The results for a tall building with active tuned mass damper show that the proposed method is efficient for the reduced-order modelling and the accuracy is very close to exact only after two iterations. Copyright © 2001 John Wiley & Sons, Ltd. [source]


The concept of the epilepsy syndrome: How useful is it in clinical practice?

EPILEPSIA, Issue 2009
Ettore Beghi
Summary An epilepsy syndrome is a disorder characterized by a cluster of symptoms and signs customarily occurring in combination. A syndromic approach to the epilepsies would be of practical value for diagnostic, prognostic, and therapeutic purposes. However, despite considerable efforts by leaders in the field of epileptology and the improved knowledge of the clinical, genetic, imaging, and biologic aspects of epilepsy, there are no measurable objective criteria for recognizing seizure types and epilepsy syndromes as separate diagnostic entities with well-defined prognostic and therapeutic aspects. The lack of pragmatic, evidence-based instruments to devise a syndromic classification useful for clinical practice can be explained by the evolving concept of epilepsy syndrome, its dynamic characteristics, the poor prognostic predictivity, and the extremely complex genetic and pathophysiologic mechanisms underlying the epileptic phenomena. In addition, the results of the published reports on epilepsy syndromes are mostly biased by flaws in the study population, design, and statistical analysis. The Classification Core Group of the International League Against Epilepsy (ILAE), which is working on a new classification of the epilepsies, stated that the process of syndrome identification requires that an evidence-based approach be applied to the published literature and future studies. [source]


Analyzing dynamic performance of stressed power systems in vicinity of instability by modal series method

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 8 2009
Ali H. Naghshbandy
Abstract Highly stressed power systems exhibit complex dynamic behaviors such as inter-area oscillations when subjected to large disturbances. In such conditions, nonlinear effects have dominant role in determining dynamic response of the systems. In this paper by using modal series method, dynamic behaviors of the stressed power systems in severe conditions and near instability have been studied. Also two measures, mode dominance measure (MDM) and most perturbed machine factor (MPF) have been introduced. They determine the most dominant modes and identify the most perturbed generators when the system is subjected to a given fault. Contribution factors have been used to show the links between identified modes and machines from the analysis. Time domain simulation has been helped for validation of the results. By using similarity transformation, state variables have been represented in modal space and utilized to check the results. The studies are carried out on the IEEE 50-generator test system which demonstrates a wide range of dynamic characteristics at different loading levels and fault scenarios. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Non-linear approaches for reducing large power systems

EUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 3 2001
X. Lei
Issues on the establishment of equivalent networks are becoming essential for the deregulated power market. This paper presents a comprehensive tool for network reduction of large power systems. Through integrating different methodologies into a simulation program, the dynamic equivalent can be established by adopting one common database. With a readily integrated modified Gauss-Newton algorithm, network reduction can be executed under the dynamic conditions either in the time domain or in the frequency domain in coping with nonlinear nature of the system involved. Furthermore, a novel algorithm based on dynamic coherency approach implemented readily into the simulation program is also presented. This novel approach determines coherent generators on non-linear basis in the time domain using the cross correlation technique, taking dynamic characteristics of the system involved into consideration. Two case studies are presented in this paper. Each of the non-linear approaches presented is applied for one of the case studies as application example. The results achieved validate the functionality of the approaches presented. [source]


Dynamic characteristics of heart rate control by the autonomic nervous system in rats

EXPERIMENTAL PHYSIOLOGY, Issue 9 2010
Masaki Mizuno
We estimated the transfer function of autonomic heart rate (HR) control by using random binary sympathetic or vagal nerve stimulation in anaesthetized rats. The transfer function from sympathetic stimulation to HR response approximated a second-order, low-pass filter with a lag time (gain, 4.29 ± 1.55 beats min,1 Hz,1; natural frequency, 0.07 ± 0.03 Hz; damping coefficient, 1.96 ± 0.64; and lag time, 0.73 ± 0.12 s). The transfer function from vagal stimulation to HR response approximated a first-order, low-pass filter with a lag time (gain, 8.84 ± 4.51 beats min,1 Hz,1; corner frequency, 0.12 ± 0.06 Hz; and lag time, 0.12 ± 0.08 s). These results suggest that the dynamic characteristics of HR control by the autonomic nervous system in rats are similar to those of larger mammals. [source]


The continuous crack flexibility model for crack identification

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 10 2001
T. G. Chondros
The presence of a crack in a structural member introduces a local flexibility that affects its dynamic response. Moreover, the crack will open and close in time depending on the loading conditions and vibration amplitude. The changes in dynamic characteristics can be measured and lead to an identification of the structural changes which eventually might lead to the detection of a structural flaw. The results of various independent evaluations of changes in the natural frequency of vibrations of cracked structural elements are reported. A crack model of a continuous flexibility, found with fracture mechanics methods using the displacement field in the vicinity of the crack developed recently is used here. The analytical results for the cracked elements behaviour based on the continuous crack flexibility vibration theory were correlated with numerical solutions, the lumped-crack beam vibration analysis and experimental results obtained on aluminium and steel beams with open cracks. [source]


An experimental investigation on spreading of droplets with evaporation and nucleation

HEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 1 2009
Gui Lu
Abstract An experimental investigation was conducted to visually observe the dynamic characteristics of water droplets with evaporation and nucleation on stainless steel and polished silicon surfaces. The water droplet diameter, contact area, and spreading speed were measured using a high-speed CCD camera at surface temperatures ranging from 110°C to 190°C, and a model was proposed to describe the dynamic behavior of droplet spreading. The spreading of water droplets under evaporation and nucleate boiling is highly dependent on the dynamic bubble behavior in the droplets, particularly bubble volume, bubble interaction, as well as the surface properties and temperature. Water droplets were easiest to spread at the surface temperature of 130 °C, and the spreading tendency increased with increasing surface coarseness. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20231 [source]


Buckled Bridges Using Film Stress for Three-Dimensional Structures: Effects of Lateral Designs on Vertical Profiles and Dynamic Characteristics

IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 2 2010
Minoru Sasaki Member
Abstract Bridges buckled by film stress can generate a vertical displacement resulting in three-dimensional structures. We have demonstrated a micromirror lifted by buckled bridges and a vertical comb drive actuator. The structures show rounded profiles in a stable manner. The detailed profiles of the bridges and the lifted micromirrors are examined. The relations between the lateral design and its effect on the vertical profile and the dynamic characteristics are studied. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]


Proper Splitting of Interconnected Power Systems

IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, Issue 2 2010
S. Najafi Non-member
Abstract Power system islanding is the last defense line to protect power grids from incidence of wide-area blackout. As a wide-area control action, power system splitting is a comprehensive decision making problem that includes different subproblems. This paper introduces a novel approach for separation of the entire power system into several stable islands in different loading levels. The proposed method combines both the dynamic and the static characteristics of interconnected power network and determines the proper splitting schemes. The presented algorithm searches for proper islanding strategy in the boundary of primary determined coherent machines using Krylov subspace method and finds the proper splitting points by transferring some of the buses in one island to another island such that total load shedding is minimized. A spanning tree-based depth first search algorithm is used to find all possible combination of transferred buses. The presented method reduces the huge initial search space of islanding strategy considering dynamic characteristics of integrated power system and reduction of search space to only boundary network. The speed of the proposed algorithm is remarkably high and can be applied for islanding the power system in real-time. The presented algorithm is applied to IEEE 118 BUS test system. Results show the robustness, effectiveness, and capability of the algorithm to determine fast and accurate proper islanding strategy. Time domain simulation of the islanding strategies confirms that all the islands which are specified by the proposed method are stable. Copyright © 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. [source]


Robust speed estimation and control of an induction motor drive based on artificial neural networks

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 5 2008
Oscar Barambones
Abstract In this paper, a speed estimation and control scheme of an induction motor drive based on an indirect field-oriented control is presented. On one hand, a rotor speed estimator based on an artificial neural network is proposed, and on the other hand, a control strategy based on the sliding-mode controller type is proposed. The stability analysis of the presented control scheme under parameter uncertainties and load disturbances is provided using the Lyapunov stability theory. Finally, simulated results show that the presented controller with the proposed observer provides high-performance dynamic characteristics and that this scheme is robust with respect to plant parameter variations and external load disturbances. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Modelling micro-turbines using Hammerstein models

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 9 2005
Francisco Jurado
Abstract The Hammerstein model configuration, which includes a nonlinear static block followed by a linear dynamic block, is applied to model the static and dynamic characteristics of a micro-turbine. The parameters in the model can be extracted from the measurements of physical engines or from the simulations of physics-based models. In this paper, a nonlinear model is used to assist in the dynamic performance of the micro-turbine when connected to the grid as a distributed generator. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Adaptive sensorless robust control of AC drives based on sliding mode control theory

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 9 2007
O. Barambones
Abstract This paper focuses in the design of a new adaptive sensorless robust control to improve the trajectory tracking performance of induction motors. The proposed design employs the so-called vector (or field oriented) control theory for the induction motor drives, being the designed control law based on an integral sliding-mode algorithm that overcomes the system uncertainties. This sliding-mode control law incorporates an adaptive switching gain in order to avoid the need of calculating an upper limit for the system uncertainties. The proposed design also includes a new method in order to estimate the rotor speed. In this method, the rotor speed estimation error is presented as a first-order simple function based on the difference between the real stator currents and the estimated stator currents. The stability analysis of the proposed controller under parameter uncertainties and load disturbances is provided using the Lyapunov stability theory. The simulated results show, on the one hand that the proposed controller with the proposed rotor speed estimator provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to plant parameter variations and external load disturbances. Finally, experimental results show the performance of the proposed control scheme. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Coarse-graining of protein structures for the normal mode studies

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 8 2007
Kilho Eom
Abstract The coarse-grained structural model such as Gaussian network has played a vital role in the normal mode studies for understanding protein dynamics related to biological functions. However, for the large proteins, the Gaussian network model is computationally unfavorable for diagonalization of Hessian (stiffness) matrix for the normal mode studies. In this article, we provide the coarse-graining method, referred to as "dynamic model condensation," which enables the further coarse-graining of protein structures consisting of small number of residues. It is shown that the coarser-grained structures reconstructed by dynamic model condensation exhibit the dynamic characteristics, such as low-frequency normal modes, qualitatively comparable to original structures. This sheds light on that dynamic model condensation and may enable one to study the large protein dynamics for gaining insight into biological functions of proteins. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2007 [source]


A novel adaptive bilateral control scheme using similar closed-loop dynamic characteristics of master/slave manipulators

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 9 2001
Jee-Hwan Ryu
This article presents a novel adaptive bilateral control scheme for obtaining ideal responses for teleoperation systems with uncertainties. A condition that is equivalent to getting an ideal response in teleoperation has been found to be making the closed-loop dynamics of master and slave manipulators a similar form. An adaptive approach is applied to achieve similarity for the uncertain master and slave manipulators. Using the similar closed-loop dynamic characteristics of master/slave teleoperation systems, excellent position and force tracking performance has been obtained without estimating the impedance of human and environment. The validity of the theoretical results is verified by experiments. © 2001 John Wiley & Sons, Inc. [source]