Home About us Contact | |||
Dynamic Behaviour (dynamic + behaviour)
Selected AbstractsIDENTIFICATION OF CLIMATE CONTROLS ON THE DYNAMIC BEHAVIOUR OF THE SUBARCTIC GLACIER SALAJEKNA, NORTHERN SCANDINAVIAGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2005PER KLINGBJER ABSTRACT. In this paper we describe the dynamic behaviour of Salajekna, a valley glacier, over the last 200 years using terrestrial observations, in situ measurements, remote sensing observations and glacier reconstructions. The response time of the glacier was calculated using analytical models and field measurements. We were subsequently able to attribute specific dynamic responses to climate trends in the available climate record. The glacier's historical maximum extension was reached around 1880,1910 and was the result of a more continental climate with multi-modal airflows in the late 18th and early 19th centuries. A transition to more maritime conditions in the mid-19th century resulted in a near-continuous 20th century retreat before the glacier adjusted to a near-steady state. [source] Untersuchung nichtlinearer Schwingungseigenschaften zur zerstörungsfreien Zustandsprüfung am Beispiel von StahlbetonbalkenBETON- UND STAHLBETONBAU, Issue 9 2007Markus Waltering Dipl.-Ing. Ingenieurbauwerke, im Speziellen Straßen- und Bahnbrücken, sind ein unverzichtbarer Bestandteil der Infrastruktur eines Landes. Um eine möglichst lange und wirtschaftliche Nutzung dieser Bauwerke zu ermöglichen, werden an Brücken regelmäßige Inspektionen durchgeführt. Die herkömmliche und am weitesten verbreitete Methode der Zustandsanalyse ist die visuelle Prüfung durch erfahrene Ingenieure. Dabei können jedoch ausschließlich äußere Anzeichen einer Schädigung festgestellt werden. Je nach Bauwerksgröße kann eine entsprechende Prüfung Tage bis Wochen in Anspruch nehmen. In besonderen Fällen kommen sehr kosten- und zeitintensive Belastungsversuche zum Einsatz. Seit einigen Jahren kommen immer häufiger Methoden zur Anwendung, welche die dynamischen Eigenschaften zur Zustandsbewertung nutzen. Im Rahmen dieses Aufsatzes werden Versuche an Stahlbetonbalken vorgestellt, bei denen die Untersuchung nichtlinearen Schwingungsverhaltens im Vordergrund steht. Damit soll ein Beitrag für die mögliche und zukünftige Beurteilung des nichtlinearen Schwingungsverhaltens zur Zustandsbewertung im Rahmen von Brückeninspektionen geleistet werden. The Investigation of Nonlinear Dynamic Behaviour for Non-Destructive Damage Assessment of Reinforced Concrete Beams The detection of damages in civil engineering structures and bridges in particular is mainly done by visual examination. However, defects as for instance partial rupture of a prestressing cable or fatigue cracks in reinforcement can not be visually observed. It is well known that damage changes dynamic structural parameters like eigenfrequencies, eigenmodes and damping. However, the sensitivity to small damages is sometimes low. Therefore, as an alternative the occurrence and evaluation of non-linear dynamic behaviour is considered. The basic idea is that non-linear dynamic effects increase with growing cracks under forced excitation. The implementation of this idea in the regular inspection program of bridges presupposes exact knowledge of the eigenfrequencies of the undamaged structure that are also supposed to be force dependent. This paper presents the results of an experimental approach with three reinforced concrete beams of different damage states investigating the non-linear behaviour due to the excitation force. [source] Dynamic behaviour and localization of pseudoglottis in alaryngeal voice related to voice qualityCLINICAL OTOLARYNGOLOGY, Issue 4 2000A.J.G.E. Peeters Objective. To evaluate the pseudoglottic position and dynamic behaviour of alaryngeal voice after laryngectomy related to voice quality. Patients and methods. Pseudoglottic vibrations during sustained phonation were evaluated by videofluoroscopy, videostroboscopy and videokymography in 15 laryngectomees and related to perceptual voice quality, assessed by two independent speech therapists. Videokymography can be used to identify irregular vibrations. This combined with videofluoroscopy and videostroboscopy characterizes the dynamic behaviour of the pseudoglottis. Results. Videofluoroscopy and videostroboscopy demonstrated a mid-neopharyngeal pseudoglottis in 10 laryngectomees, five of whom had an additional inferior located pseudoglottis. Four patients only had a pseudoglottis localized low in the neopharynx and one patient had no pseudoglottis at all. Videokymographic evaluation of pseudoglottic vibrations could be obtained in eight patients, surprisingly demonstrating a regular vibration pattern in all cases. Good alaryngeal voice quality was related to a mid-neopharyngeal pseudoglottis. This is consistent with our experience concerning botulinum toxin treatment for neopharyngeal hypertonicity (injection in the low pseudoglottis reduced phonatory pressure and increased voice quality, whereas injection in the mid-neopharyngeal pseudoglottis resulted in voice deterioration). Conclusion. Good alaryngeal voice quality is related to a mid-neopharyngeal pseudoglottis which should be taken into consideration when treating hypertonicity. [source] Planform dynamics of the Lower Mississippi RiverEARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2006Oliver P. Harmar Abstract This paper presents an analysis of the planform behaviour of the Lower Mississippi River (LMR) using a series of maps and hydrographic surveys covering the period 1765,1975. Data allow analysis at various time and space scales, using fixed and statistically defined reaches, both before and after extensive channel modification. Previous research has interpreted planform change in relation to geomorphological or engineering regime-type analyses of channel length and width for the LMR as a ,single system'. The analysis here is broadly consistent with these approaches, but highlights the importance of meander geometry, in the form of the radius of curvature:width ratio. This neglected factor helps resolve paradoxes relating to observed changes in sediment transport and channel stability. When viewed over smaller time and space scales, analysis of dynamics using fixed reach boundaries reveals a downstream trend in the pattern of planform behaviour, which is closely related to the distribution of valley floor deposits, and which also reflects neotectonic influences. Analysis of changes using statistically determined reach boundaries shows that, over shorter time scales, meander trains are continually formed and modified over a period of approximately 120 years. Zones of more-or-less dynamic behaviour thus move through the LMR. The research also provides a context for 20th century engineering interventions to the river. These have constrained the magnitude of planform adjustment, but also altered the kind of response that is now possible in relation to changes in discharge and sediment load, and as a consequence of internal feedbacks within the LMR system. Copyright © 2006 John Wiley & Sons, Ltd. [source] A model for the 3D kinematic interaction analysis of pile groups in layered soilsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 11 2009Francesca Dezi Abstract The paper presents a numerical model for the analysis of the soil,structure kinematic interaction of single piles and pile groups embedded in layered soil deposits during seismic actions. A finite element model is considered for the pile group and the soil is assumed to be a Winkler-type medium. The pile,soil,pile interaction and the radiation problem are accounted for by means of elastodynamic Green's functions. Condensation of the problem permits a consistent and straightforward derivation of both the impedance functions and the foundation input motion, which are necessary to perform the inertial soil,structure interaction analyses. The model proposed allows calculating the internal forces induced by soil,pile and pile-to-pile interactions. Comparisons with data available in literature are made to study the convergence and validate the model. An application to a realistic pile foundation is given to demonstrate the potential of the model to catch the dynamic behaviour of the soil,foundation system and the stress resultants in each pile. Copyright © 2009 John Wiley & Sons, Ltd. [source] Seismic behaviour of hybrid systems made of PR composite frames coupled with dissipative bracingsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 6 2008C. Amadio Abstract The paper investigates the dynamic behaviour of hybrid systems made of partially restrained (PR) steel,concrete composite frames coupled with viscoelastic dissipative bracings. A numerical model that accounts for both the resisting mechanisms of the joint and the viscoelastic contribution of the dissipative bracing is introduced and briefly discussed. The model is first validated against experimental outcomes obtained on a one-storey two-bay composite frame with partial strength semi-rigid joints subjected to free vibrations. A number of time-history analyses under different earthquake ground motions and peak ground accelerations are then carried out on the same type of frame. The purpose is to investigate the influence of the type of beam-to-column connection and property of the viscoelastic bracing on the performance of the hybrid system. The inherent stiffness of the bare PR frame and the plastic hysteresis of the beam-to-column joints, which always lead to only limited damage in the joint, are found to provide a significant contribution to the overall structural performance even under destructive earthquakes. This remark leads to the conclusion that the viscoelastic bracing can be effectively used within the hybrid system. Copyright © 2008 John Wiley & Sons, Ltd. [source] Failure of masonry arches under impulse base motionEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 14 2007Laura De Lorenzis Abstract Recent seismic events have caused damage or collapse of invaluable historical buildings, further proving the vulnerability of unreinforced masonry (URM) structures to earthquakes. This study aims to understand failure of masonry arches,typical components of URM historic structures,subjected to horizontal ground acceleration impulses. An analytical model is developed to describe the dynamic behaviour of the arch and is used to predict the combinations of impulse magnitudes and durations which lead to its collapse. The model considers impact of the rigid blocks through several cycles of motion, illustrating that failure can occur at lower ground accelerations than previously believed. The resulting failure domains are of potential use for design and assessment purposes. Predictions of the analytical model are compared with results of numerical modelling by the distinct element method, and the good agreement between results validates the analytical model and at the same time confirms the potential of the distinct element framework as a method of evaluating complex URM structures under dynamic loading. Copyright © 2007 John Wiley & Sons, Ltd. [source] Three-dimensional models of reservoir sediment and effects on the seismic response of arch damsEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 10 2004O. Maeso Abstract The important effects of bottom sediments on the seismic response of arch dams are studied in this paper. To do so, a three-dimensional boundary element model is used. It includes the water reservoir as a compressible fluid, the dam and unbounded foundation rock as viscoelastic solids, and the bottom sediment as a two-phase poroelastic domain with dynamic behaviour described by Biot's equations. Dynamic interaction among all those regions, local topography and travelling wave effects are taken into account. The results obtained show the important influence of sediment compressibility and permeability on the seismic response. The former is associated with a general change of the system response whereas the permeability has a significant influence on damping at resonance peaks. The analysis is carried out in the frequency domain considering time harmonic excitation due to P and S plane waves. The time-domain results obtained by using the Fourier transform for a given earthquake accelerogram are also shown. The possibility of using simplified models to represent the bottom sediment effects is discussed in the paper. Two alternative models for porous sediment are tested. Simplified models are shown to be able to reproduce the effects of porous sediments except for very high permeability values. Copyright © 2004 John Wiley & Sons, Ltd. [source] An experimental evaluation of ice cover effects on the dynamic behaviour of a concrete gravity damEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 12 2002Patrick Paultre Abstract An extensive forced-vibration testing programme has been carried out on an 84-m concrete gravity dam located in northeastern Québec, Canada. The dam was subjected to a harmonic load on the crest in summer and severe winter conditions with temperatures ranging from ,10°C to ,15°C and a 1.0,1.5m ice cover. Acceleration and hydrodynamic frequency responses were obtained in different locations on the dam and in the reservoir. The main objective of the repeated tests was to investigate the effects of the ice cover on the dynamic behaviour of the dam,reservoir,foundation system, by comparing summer and winter results. Modifications in damping and resonance frequencies were observed, as well as an additional resonance that was attributed to an interaction of the dam with the ice cover. These findings provided a reliable and unique database for the investigations of dam,reservoir,foundation interaction and, in particular, the ice-cover effects for dams located in northern regions. Copyright © 2002 John Wiley & Sons, Ltd. [source] Systematic lumped-parameter models for foundations based on polynomial-fraction approximationEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 7 2002Wen-Hwa Wu Abstract Based on the approximation by polynomial-fraction, a series of systematic lumped-parameter models are developed in this paper for efficiently representing the dynamic behaviour of unbounded soil. Concise formulation is first employed to represent the dynamic flexibility function of foundation with a ratio of two polynomials. By defining an appropriate quadratic error function, the optimal coefficients of the polynomials can be directly solved from a system of linear equations. Through performing partial-fraction expansion on this polynomial-fraction and designing two basic discrete-element models corresponding to the partial fractions, systematic lumped-parameter models can be conveniently established by connecting these basic units in series. Since the systematic lumped-parameter models are configured without introducing any mass, the foundation input motion can be directly applied to these models for their applications to the analysis of seismic excitation. The effectiveness of these new models is strictly validated by successfully simulating a semi-infinite bar on an elastic foundation. Subsequently, these models are applied for representing the dynamic stiffness functions for different types of foundation. Comparison of the new models with the other existing lumped-parameter models is also made to illustrate their advantages in requiring fewer parameters and featuring a more systematic expansion. Copyright © 2002 John Wiley & Sons, Ltd. [source] An experimental investigation of water level effects on the dynamic behaviour of a large arch damEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 8 2001Jean Proulx Abstract The need for full-scale dynamic tests, which are recognized as the most reliable method to evaluate a structure's vibration properties, is increasing as new analysis techniques are developed that take into account the complex interaction phenomenons that occur in dam,reservoir,foundation systems. They are extremely useful to obtain reliable data for the calibration of newly developed numerical methods. The Earthquake Engineering and Structural Dynamics Research Center (CRGP) at the University of Sherbrooke has been developing and applying dynamic testing methods for large structures in the past 10 years. This paper presents the experimental evaluation of the effects of the varying water level on the dynamic response of the 180 m Emosson arch dam in Switzerland. Repeated forced-vibration tests were carried out on the dam during four different periods of the reservoir's filling cycle during a one-year span. Acceleration and hydrodynamic pressure frequency responses were obtained at several locations while the dam was subjected to horizontal harmonic loading. The variation of the resonant frequencies as a function of the reservoir level is investigated. A summary of the ongoing numerical correlation phase with a three-dimensional finite element model for the dam,reservoir,foundation system is also presented. Copyright © 2001 John Wiley & Sons, Ltd. [source] Use of Molecular Scaffolding for the Stabilization of an Intramolecular Dative PIII -PV SystemEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 2 2003Petr Kilian Abstract The reaction of NapP2S4 (1; Nap = naphthalene-1,8-diyl) with chlorine gas gave [Nap(PCl2)(PCl4)] (2), displaying a rare ,4P-,6P bonding interaction. An X-ray structure analysis confirmed the PCl5 -like, P,P bond containing phosphonium-phosphoride structure of 2 in the crystal, which was also found in solution at low temperature. At ambient and higher temperatures, dynamic behaviour on the NMR time-scale was observed, which was assigned to interchange of the ionic phosphonium-phosphoride form 2 and the molecular bis(phosphorane) Nap(PCl3)2 form 3, rather than to the ionic phosphonium salt-phosphorane form [Nap(PCl3)(PCl2)][Cl] 4. Electronic structure calculations were performed at the B3LYP/6,31G(d,p) level of theory on structures 2 and 3; structure 3 was located as a local minimum on the potential energy surface, 15 kcal·mol,1 higher in energy than structure 2. The crystal structure and calculated P,P distances are 2.34 and 2.31 Å for 2 and 3, respectively. An activation energy of 19.7 kcal·mol,1 was found for the transition state structure by coordinate driving calculations; the line-shape analysis of variable temperature 31P{1H} NMR spectra gave an activation energy of 14.4 kcal·mol,1. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source] Analysis of effects of contracts on the stability of dynamic power marketsEUROPEAN TRANSACTIONS ON ELECTRICAL POWER, Issue 1 2009Jia Yan-Bing Abstract Experiences with operations of power markets show that contracts may affect stability of markets. Therefore, it is necessary to consider whether the market with bilateral contracts will lead to a stable equilibrium conditions after the market is exposed to certain kinds of disturbances. In this paper, the dynamic behaviour of power markets is expressed by differential/algebraic equations, and eigenvalue analysis is used to study effects of contracts on stability of the model. Results of the analysis show that suitable relative ratio of contracts can improve the stability of power markets and even make the unstable markets stable. On the other hand, unsuitable relative ratio of contracts may deteriorate the stability of markets. Copyright © 2007 John Wiley & Sons, Ltd. [source] Modelling for an expert system and a parameter validation methodEXPERT SYSTEMS, Issue 5 2002A. Chatzinikolaou A model,based engineering diagnostic method is typically based on the evaluation of the residuals generated from a comparison of important variable values from a simulated system and the corresponding measured values from the system's performance. Consequently, a model should describe the dynamic behaviour of the system as accurately as possible using suitably selected parameter values. This implies the need for validation of the performance of the model by comparison with the measurements of the actual system. This process is especially important when the detection of faults is performed in real,time conditions. In this paper, the modelling process for hydraulic systems as well as a new parameter validation method that has been developed using the DASYLab data acquisition and control software for the estimation of the uncertain parameter values of the model is presented. This model validation process led to the establishment of a model,based expert system that is able to diagnose real,time faults working in parallel with actual dynamic industrial automated processes. [source] Effects of a hexokinase II deletion on the dynamics of glycolysis in continuous cultures of Saccharomyces cerevisiaeFEMS YEAST RESEARCH, Issue 2 2002Jasper A. Diderich Abstract In glucose-limited aerobic chemostat cultures of a wild-type Saccharomyces cerevisiae and a derived hxk2 null strain, metabolic fluxes were identical. However, the concentrations of intracellular metabolites, especially fructose 1,6-bisphosphate, and hexose-phosphorylating activities differed. Interestingly, the hxk2 null strain showed a higher maximal growth rate and higher Crabtree threshold dilution rate, revealing a higher oxidative capacity for this strain. After a pulse of glucose, aerobic glucose-limited cultures of wild-type S. cerevisiae displayed an overshoot in the intracellular concentrations of glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-bisphosphate before a new steady state was established, in contrast to the hxk2 null strain which reached a new steady state without overshoot of these metabolites. At low dilution rates the overshoot of intracellular metabolites in the wild-type strain coincided with the immediate production of ethanol after the glucose pulse. In contrast, in the hxk2 null strain the production of ethanol started gradually. However, in spite of the initial differences in ethanol production and dynamic behaviour of the intracellular metabolites, the steady-state fluxes after transition from glucose limitation to glucose excess were not significantly different in the wild-type strain and the hxk2 null strain at any dilution rate. [source] IDENTIFICATION OF CLIMATE CONTROLS ON THE DYNAMIC BEHAVIOUR OF THE SUBARCTIC GLACIER SALAJEKNA, NORTHERN SCANDINAVIAGEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2005PER KLINGBJER ABSTRACT. In this paper we describe the dynamic behaviour of Salajekna, a valley glacier, over the last 200 years using terrestrial observations, in situ measurements, remote sensing observations and glacier reconstructions. The response time of the glacier was calculated using analytical models and field measurements. We were subsequently able to attribute specific dynamic responses to climate trends in the available climate record. The glacier's historical maximum extension was reached around 1880,1910 and was the result of a more continental climate with multi-modal airflows in the late 18th and early 19th centuries. A transition to more maritime conditions in the mid-19th century resulted in a near-continuous 20th century retreat before the glacier adjusted to a near-steady state. [source] Modelling the chloride signal at Plynlimon, Wales, using a modified dynamic TOPMODEL incorporating conservative chemical mixing (with uncertainty)HYDROLOGICAL PROCESSES, Issue 3 2007T. Page Abstract The application of a modified version of dynamic TOPMODEL for two subcatchments at Plynlimon, Wales is described. Conservative chemical mixing within mobile and immobile stores has been added to the hydrological model in an attempt to simulate observed stream chloride concentrations. The model was not fully able to simulate the observed behaviour, in particular the short- to medium-term dynamics. One of the primary problems highlighted by the study was the representation of dry deposition and cloud-droplet-deposited chloride, which formed a significant part of the long-term chloride mass budget. Equifinality of parameter sets inhibited the ability to determine the effective catchment mixing volumes and coefficients or the most likely partition between occult mass inputs and chloride mass inputs determined by catchment immobile-store antecedent conditions. Some success was achieved, in as much as some aspects of the dynamic behaviour of the signal were satisfactorily simulated, although spectral analysis showed that the model could not fully reproduce the 1/f power spectra of observed stream chloride concentrations with its implications of a wide distribution of residence times for water in the catchment. Copyright © 2006 John Wiley & Sons, Ltd. [source] Vibration of a space arc subject to a critical dynamic loadINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 4 2005Lazarus Teneketzis Tenek Abstract The present study concerns the dynamic behaviour of a space arc subject to a midarc vertical buckling load dynamically applied. The arc is discretized with a set of three-dimensional beam finite elements and the non-linear dynamic equation (large displacements) is solved by means of an unconditionally stable time-dependent scheme over time. The vertical excitation gives rise to a very fast and erratic horizontal wave as the structure begins to vibrate in all directions. This horizontal wave has chaotic characteristics as its attractor indicates. Time,displacement curves are obtained for all components of the midarc point. Although the time algorithm was executed here for 2000 time steps, simulation over longer periods of time can reveal the vibration characteristics and even simulate structural failure under the imposed dynamic buckling load for the space arc structure. Copyright © 2004 John Wiley & Sons, Ltd. [source] Optimization of structural dynamic behaviour based on effective modal parametersINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2007S. Besset Abstract Optimization of complex structures often leads to high calculation costs. Indeed, the structure has to be frequently reanalysed in order to update the optimization criteria. We propose an optimization method based on effective modal parameters. These parameters are close to the modal matrices used for the modal analysis of a structure. Thus, once the structure has been analysed, it becomes very easy to calculate optimization criteria. First, we will explain the modal analysis that we will use in this paper. A modal model will be used to analyse the hollow parts of the structure. The modal analysis of the whole structure will be performed using substructuring and ,double modal synthesis' proposed by Jezequel. Secondly, we will explain how to obtain effective modal parameters and their use for optimization. Finally, we will show the efficiency of these parameters through the optimization of a complex structure, using two types of optimization methods. Copyright © 2006 John Wiley & Sons, Ltd. [source] Three-dimensional vibration analysis of rectangular thick plates on Pasternak foundationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2004D. Zhou Abstract The free-vibration characteristics of rectangular thick plates resting on elastic foundations have been studied, based on the three-dimensional, linear and small strain elasticity theory. The foundation is described by the Pasternak (two-parameter) model. The Ritz method is used to derive the eigenvalue equation of the rectangular plate by augmenting the strain energy of the plate with the potential energy of the elastic foundation. The Chebyshev polynomials multiplied by a boundary function are selected as the admissible functions of the displacement functions in each direction. The approach is suitable for rectangular plates with arbitrary boundary conditions. Convergence and comparison studies have been performed on square plates on elastic foundations with different boundary conditions. It is shown that the present method has a rapid convergent rate, stable numerical operation and very high accuracy. Parametric investigations on the dynamic behaviour of clamped square thick plates on elastic foundations have been carried out in detail, with respect to different thickness,span ratios and foundation parameters. Some results found for the first time have been given and some important conclusions have been drawn. Copyright © 2004 John Wiley & Sons, Ltd. [source] A-scalability and an integrated computational technology and framework for non-linear structural dynamics.INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 15 2003Part 2: Implementation aspects, parallel performance results Abstract An integrated framework and computational technology is described that addresses the issues to foster absolute scalability (A-scalability) of the entire transient duration of the simulations of implicit non-linear structural dynamics of large scale practical applications on a large number of parallel processors. Whereas the theoretical developments and parallel formulations were presented in Part 1, the implementation, validation and parallel performance assessments and results are presented here in Part 2 of the paper. Relatively simple numerical examples involving large deformation and elastic and elastoplastic non-linear dynamic behaviour are first presented via the proposed framework for demonstrating the comparative accuracy of methods in comparison to available experimental results and/or results available in the literature. For practical geometrically complex meshes, the A-scalability of non-linear implicit dynamic computations is then illustrated by employing scalable optimal dissipative zero-order displacement and velocity overshoot behaviour time operators which are a subset of the generalized framework in conjunction with numerically scalable spatial domain decomposition methods and scalable graph partitioning techniques. The constant run times of the entire simulation of ,fixed-memory-use-per-processor' scaling of complex finite element mesh geometries is demonstrated for large scale problems and large processor counts on at least 1024 processors. Copyright © 2003 John Wiley & Sons, Ltd. [source] Optimal modal reduction of vibrating substructuresINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 3 2003Paul E. Barbone Abstract A structure which consists of a main part and a number of attached substructures is considered. A ,model reduction' scheme is developed and applied to each of the discrete substructures. Linear undamped transient vibrational motion of the structure is assumed, with general external forcing and initial conditions. The goal is to replace each discrete substructure by another substructure with a much smaller number of degrees of freedom, while minimizing the effect this reduction has on the dynamic behaviour of the main structure. The approach taken here involves Ritz reduction and the Dirichlet-to-Neumann map as analysis tools. The resulting scheme is based on a special form of modal reduction, and is shown to be optimal in a certain sense, for long simulation times. The performance of the scheme is demonstrated via numerical examples, and is compared to that of standard modal reduction. Copyright © 2003 John Wiley & Sons, Ltd. [source] Crack identification of a planar frame structure based on a synthetic artificial intelligence techniqueINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 1 2003Mun-Bo Shim Abstract It has been established that a crack has an important effect on the dynamic behaviour of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a planar frame structure, a method is presented in this paper which uses a synthetic artificial intelligence technique, i.e. adaptive-network-based fuzzy inference system (ANFIS) solved via a hybrid learning algorithm (the backpropagation gradient descent and the least-squares method) and continuous evolutionary algorithms (CEAs) solving single objective optimization problems with a continuous function and continuous search space efficiently are unified. With ANFIS and CEAs it is possible to formulate the inverse problem. ANFIS is used to obtain the input (the location and depth of a crack),output (the structural eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this idea on 2D beam structures and the results are promising. Copyright © 2003 John Wiley & Sons, Ltd. [source] A method for representing boundaries in discrete element modelling,part I: Geometry and contact detectionINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2001M. Kremmer Abstract The discrete element method for analysis of the dynamic behaviour of discontinuous media is well established. However, its application to engineering problems is still limited to simplified representations of structural boundaries and their kinematics. In this paper a method is developed for representing three-dimensional boundaries of arbitrary geometry and for modelling the interaction between boundary objects and particles within the discrete element modelling framework. The approach, which we term the finite wall method, uses planar triangular elements to approximate the boundary surface topology. Any number of wall elements can be used to model the shape of the structure. A contact detection scheme is presented for boundary surfaces and spheres based on a series of vector projections to reduce the problem dimensionally. The algorithm employs spatial sporting to obtain the set of potential contacts between spheres and wall elements prior to contact resolution. In a further stage, all possible contact conditions including contact with surfaces, edges and corners are explicitly determined. Part I of this two-part series of papers describes the finite wall method for representation of surface geometry and fully elaborates the method for detecting and resolving contact between boundary wall elements and spheres. In Part II the finite wall method is extended to apply kinematics to linearly independent boundary objects using combinations of translational and rotational motion. An approach is developed for coupling the DEM with the FEM for the purpose of optimising the design of structures which are dynamically interacting with particulate media. Copyright © 2001 John Wiley & Sons, Ltd. [source] A method for representing boundaries in discrete element modelling,part II: KinematicsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2001M. Kremmer Abstract The application of the DEM to engineering problems involving the dynamic behaviour of discontinuous media has necessitated the introduction of moving boundary surfaces. In this paper a method is presented for modelling three-dimensional moving boundary surfaces within the discrete element framework. The surfaces of boundary objects are discretized into triangular planar surfaces using the finite wall method. Wall elements are grouped and each group is associated with a single discrete boundary object which may move independently. Movement comprises any combination of translation and rotation of wall element groups, subject to a given acceleration and velocity during a calculation cycle. The scheme is explicit due to rigidity of the wall elements which are stationary fixed in position and orientation over a time step. Any in-plane velocity is handled as a contact point velocity within a calculation cycle. The kinematic conditions at each calculation cycle may be pre-defined or returned from a separate calculation of rigid body motion of the boundary object. The method provides a means for coupling sphere-based particle dynamics with rigid body dynamics and structural analysis of boundary components. Copyright © 2001 John Wiley & Sons, Ltd. [source] Swelling effect on the dynamic behaviour of composite cylindrical shells conveying fluidINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2006M. H. Toorani Abstract This paper presents a semi-analytical investigation of a fluid,structure system. Both isotropic and composite cylindrical shells filled with or subjected to a flowing fluid have been considered in this study. The structure may be uniform or non-uniform in the circumferential direction. The hybrid finite element approach, shearable shell theory and velocity potential flow theory have been combined to establish the dynamic equations of the coupled system. The set of matrices describing their relative contributions to equilibrium is determined by exact analytical integration of the equilibrium equations. The linear potential flow theory is applied to describe the fluid effects that lead to the inertial, centrifugal and Coriolis forces. The axisymmetric, beam-like and shell modes of vibrations in both cases of uniform and non-uniform cylindrical shells are investigated. Fluid elastic stability of a structure subjected to a flowing fluid is also studied. This theory yields the high and the low eigenvalues and eigenmodes with comparably high accuracy. Reasonable agreement is found with other theories and experiments. Copyright © 2005 John Wiley & Sons, Ltd. [source] Dynamic model of one-cycle control for converters operating in continuous and discontinuous conduction modes,INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 5 2009N. Femia Abstract In this paper a new dynamic model of one-cycle-controlled converters operating either in continuous or in discontinuous conduction mode (DCM) is introduced. The static and dynamic behaviour is analysed by using sampled-data modelling combined with the small-signal linearization of the average model of the converter's power stage. The proposed model is valid for frequencies up to half the switching frequency and, while the other dynamic models presented in the literature cover continuous conduction mode only, it also gives an accurate prediction of the system's dynamic behaviour in the DCM. The model allows to determine the closed-form expression of the reference-to-output transfer function G of the system, which is a fundamental prerequisite for the design of a conventional output feedback control circuit aimed at improving the dynamic behaviour of the system in response to load variations. In this paper it is also shown that one-cycle control does not work properly in switching converters operating in deep DCM if some specific design constraints are not fulfilled. The theoretical predictions are confirmed by the results of suitable numerical simulations and laboratory experiments on a one-cycle-controlled buck-switching converter. Copyright © 2008 John Wiley & Sons, Ltd. [source] Complex dynamics in one-dimensional CNNsINTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 1 2006István Petrás Abstract The effect of boundary conditions on the global dynamics of cellular neural networks (CNNs) is investigated. As a case study one-dimensional template CNNs are considered. It is shown that if the off-diagonal template elements have opposite sign, then the boundary conditions behave as bifurcation parameters and can give rise to a very rich and complex dynamic behaviour. In particular, they determine the equilibrium point patterns, the transition from stability to instability and the occurrence of several bifurcation phenomena leading to strange and/or chaotic attractors and to the coexistence of several attractors. Then the influence of the number of cells on the global dynamics is studied, with particular reference to the occurrence of hyperchaotic behaviour. Copyright © 2006 John Wiley & Sons, Ltd. [source] Models of non-smooth switches in electrical systemsINTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 3 2005Christoph Glocker Abstract Idealized modelling of diodes, relays and switches in the framework of linear complementarity is introduced. Within the charge approach, the classical electromechanical analogy is extended to passively and actively switching components in electrical circuits. The associated branch relations are expressed in terms of set-valued functions, which allow to formulate the circuit's dynamic behaviour as a differential inclusion. This approach is demonstrated by the example of the DC,DC buck converter. A difference scheme, known in mechanics as time stepping, is applied for numerical approximation of the evolution problem. The discretized inclusions are formulated as a linear complementarity problem in standard form, which implicitly takes care of all switching events by its solution. State reduction, which requires manipulation of the set-valued branch relations in order to obtain a minimal model, is performed on the example of the buck converter. Copyright © 2005 John Wiley & Sons, Ltd. [source] A dynamic mathematical model of a shell-and-tube evaporator. validation with pure and blend refrigerantsINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 3 2007R. Llopis Abstract This work presents a mathematical model of a shell-and-tube evaporator based on mass continuity, energy conservation and heat transfer physical fundamentals. The model is formulated as a control volume combination that represents the different refrigerant states along the evaporator. Since the model is based on refrigerant and secondary fluid states prediction, it can be easily adapted for modelling any type of evaporator. The strategy of working with physical fundamentals allows the steady- and dynamic-state analysis of any of its performance variables. The paper presents a steady-state validation made with two pure refrigerants (HCFC-22, HFC-134a) and with a zeotropic blend (HFC-407C), and a dynamic validation with transient experimental tests using HCFC-22. The model prediction error is lower than 5% and it is well in accordance with actual dynamic behaviour. Copyright © 2006 John Wiley & Sons, Ltd. [source] |