DSMC Method (dsmc + method)

Distribution by Scientific Domains


Selected Abstracts


Parallel DSMC method using dynamic domain decomposition

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 1 2005
J.-S. Wu
Abstract A general parallel direct simulation Monte Carlo method using unstructured mesh is introduced, which incorporates a multi-level graph-partitioning technique to dynamically decompose the computational domain. The current DSMC method is implemented on an unstructured mesh using particle ray-tracing technique, which takes the advantages of the cell connectivity information. In addition, various strategies applying the stop at rise (SAR) (IEEE Trans Comput 1988; 39:1073,1087) scheme is studied to determine how frequent the domain should be re-decomposed. A high-speed, bottom-driven cavity flow, including small, medium and large problems, based on the number of particles and cells, are simulated. Corresponding analysis of parallel performance is reported on IBM-SP2 parallel machine up to 64 processors. Analysis shows that degree of imbalance among processors with dynamic load balancing is about ,, of that without dynamic load balancing. Detailed time analysis shows that degree of imbalance levels off very rapidly at a relatively low value with increasing number of processors when applying dynamic load balancing, which makes the large problem size fairly scalable for processors more than 64. In general, optimal frequency of activating SAR scheme decreases with problem size. At the end, the method is applied to compute two two-dimensional hypersonic flows, a three-dimensional hypersonic flow and a three-dimensional near-continuum twin-jet gas flow to demonstrate its superior computational capability and compare with experimental data and previous simulation data wherever available. Copyright 2005 John Wiley & Sons, Ltd. [source]


A parallel cell-based DSMC method on unstructured adaptive meshes

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2004
Min Gyu Kim
Abstract A parallel DSMC method based on a cell-based data structure is developed for the efficient simulation of rarefied gas flows on PC-clusters. Parallel computation is made by decomposing the computational domain into several subdomains. Dynamic load balancing between processors is achieved based on the number of simulation particles and the number of cells allocated in each subdomain. Adjustment of cell size is also made through mesh adaptation for the improvement of solution accuracy and the efficient usage of meshes. Applications were made for a two-dimensional supersonic leading-edge flow, the axi-symmetric Rothe's nozzle, and the open hollow cylinder flare flow for validation. It was found that the present method is an efficient tool for the simulation of rarefied gas flows on PC-based parallel machines. Copyright 2004 John Wiley & Sons, Ltd. [source]


The direct simulation Monte Carlo method using unstructured adaptive mesh and its application

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 4 2002
J.-S. Wu
Abstract The implementation of an adaptive mesh-embedding (h-refinement) scheme using unstructured grid in two-dimensional direct simulation Monte Carlo (DSMC) method is reported. In this technique, local isotropic refinement is used to introduce new mesh where the local cell Knudsen number is less than some preset value. This simple scheme, however, has several severe consequences affecting the performance of the DSMC method. Thus, we have applied a technique to remove the hanging node, by introducing the an-isotropic refinement in the interfacial cells between refined and non-refined cells. Not only does this remedy increase a negligible amount of work, but it also removes all the difficulties presented in the originals scheme. We have tested the proposed scheme for argon gas in a high-speed driven cavity flow. The results show an improved flow resolution as compared with that of un-adaptive mesh. Finally, we have used triangular adaptive mesh to compute a near-continuum gas flow, a hypersonic flow over a cylinder. The results show fairly good agreement with previous studies. In summary, the proposed simple mesh adaptation is very useful in computing rarefied gas flows, which involve both complicated geometry and highly non-uniform density variations throughout the flow field. Copyright 2002 John Wiley & Sons, Ltd. [source]