DNA Translocation (dna + translocation)

Distribution by Scientific Domains


Selected Abstracts


Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27

FEBS JOURNAL, Issue 18 2006
Cornelia Schwarzenlander
Horizontal gene transfer has been a major force for genome plasticity over evolutionary history, and is largely responsible for fitness-enhancing traits, including antibiotic resistance and virulence factors. In particular, for adaptation of prokaryotes to extreme environments, lateral gene transfer seems to have played a crucial role. Recently, by performing a genome-wide mutagenesis approach with Thermus thermophilus HB27, we identified the first genes in a thermophilic bacterium for the uptake of free DNA, a process called natural transformation. Here, we present the first data on the biochemistry and bioenergetics of the DNA transport process in this thermophile. We report that linear and circular plasmid DNA are equally well taken up with a high maximal velocity of 1.5 µg DNA·(mg protein),1·min,1, demonstrating an extremely efficient binding and uptake rate of 40 kb·s,1·cell,1. Uncouplers and ATPase inhibitors immediately inhibited DNA uptake, providing clear evidence that DNA translocation in HB27 is an energy-dependent process. DNA uptake studies with genomic DNA of Bacteria, Archaea and Eukarya revealed that Thermus thermophilus HB27 takes up DNA from members of all three domains of life. We propose that the extraordinary broad substrate specificity of the highly efficient Thermus thermophilus HB27 DNA uptake system may contribute significantly to thermoadaptation of Thermus thermophilus HB27 and to interdomain DNA transfer in hot environments. [source]


Virus DNA translocation: progress towards a first ascent of Mount Pretty Difficult

MOLECULAR MICROBIOLOGY, Issue 1 2006
Nasib K. Maluf
Summary Virion DNA molecules of large dsDNA viruses are highly condensed. To pack the DNA, an ATP hydrolysis-powered motor translocates the DNA into a preformed empty protein shell, the prohead. The icosahedral prohead has a special fivefold vertex, the portal vertex, where the translocation machinery acts. The portal vertex contains the portal protein, a gear-shaped dodecamer of radially disposed subunits with a central channel for DNA entry. The symmetry mismatch between the fivefold symmetry of the shell vertex and the 12-fold symmetry of the portal protein has prompted DNA packaging models in which ATP-driven portal protein rotation drives DNA translocation. In this issue of Molecular Microbiology, Baumann and colleagues test portal rotation models using bacteriophage T4. A fusion between the gp20 portal protein and the HOC external shell decoration protein is used to create a block to portal rotation. Finding that DNA packaging is unimpeded in proheads containing the fusion argues that portal rotation is not crucial to DNA translocation. The paper is a landmark for describing direct testing of the mechanism of DNA translocation. [source]


Sequential model of phage PRD1 DNA delivery: active involvement of the viral membrane

MOLECULAR MICROBIOLOGY, Issue 5 2002
A. Marika Grahn
Summary DNA translocation across the barriers of recipient cells is not well understood. Viral DNA delivery mechanisms offer an opportunity to obtain useful information in systems in which the process can be arrested to a number of stages. PRD1 is an icosahedral double-stranded (ds)DNA bacterial virus with an internal membrane. It is an atypical dsDNA phage, as any of the vertex spikes can be used for receptor recognition. In this report, we dissect the PRD1 DNA entry into a number of steps: (i) outer membrane (OM) penetration; (ii) peptidoglycan digestion; (iii) cytoplasmic membrane (CM) penetration; and (iv) DNA translocation. We present a model for PRD1 DNA entry proposing that the initial stage of entry is powered by the pressure build-up during DNA packaging. The viral protein P11 is shown to function as the first DNA delivery protein needed to penetrate the OM. We also report a DNA translocation machinery composed of at least three viral integral membrane proteins, P14, P18 and P32. [source]


Purification, crystallization and preliminary X-ray analysis of the HsdR subunit of the EcoR124I endonuclease from Escherichia coli

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2007
Mikalai Lapkouski
EcoR124I is a multicomplex enzyme belonging to the type I restriction-modification system from Escherichia coli. Although EcoR124I has been extensively characterized biochemically, there is no direct structural information available about particular subunits. HsdR is a motor subunit that is responsible for ATP hydrolysis, DNA translocation and cleavage of the DNA substrate recognized by the complex. Recombinant HsdR subunit was crystallized using the sitting-drop vapour-diffusion method. Crystals belong to the primitive monoclinic space group, with unit-cell parameters a = 85.75, b = 124.71, c = 128.37,Å, , = 108.14°. Native data were collected to 2.6,Å resolution at the X12 beamline of EMBL Hamburg. [source]