DNA Structure (dna + structure)

Distribution by Scientific Domains
Distribution within Chemistry


Selected Abstracts


DNA supercoiling in Escherichia coli is under tight and subtle homeostatic control, involving gene-expression and metabolic regulation of both topoisomerase I and DNA gyrase

FEBS JOURNAL, Issue 6 2002
Jacky L. Snoep
DNA of prokaryotes is in a nonequilibrium structural state, characterized as ,active' DNA supercoiling. Alterations in this state affect many life processes and a homeostatic control of DNA supercoiling has been suggested [Menzel, R. & Gellert, M. (1983) Cell34, 105,113]. We here report on a new method for quantifying homeostatic control of the high-energy state of in vivo DNA. The method involves making small perturbation in the expression of topoisomerase I, and measuring the effect on DNA supercoiling of a reporter plasmid and on the expression of DNA gyrase. In a separate set of experiments the expression of DNA gyrase was manipulated and the control on DNA supercoiling and topoisomerase I expression was measured [part of these latter experiments has been published in Jensen, P.R., van der Weijden, C.C., Jensen, L.B., Westerhoff, H.V. & Snoep, J.L. (1999) Eur. J. Biochem.266, 865,877]. Of the two regulatory mechanisms via which homeostasis is,conferred, regulation of enzyme activity or regulation of enzyme expression, we quantified the first to be responsible for 72% and the latter for 28%. The gene expression regulation could be dissected to DNA gyrase (21%) and to topoisomerase I (7%). On a scale from 0 (no homeostatic control) to 1 (full homeostatic control) we quantified the homeostatic control of DNA supercoiling at 0.87. A 10% manipulation of either topoisomerase I or DNA gyrase activity results in a 1.3% change of DNA supercoiling only. We conclude that the homeostatic regulation of the nonequilibrium DNA structure in wild-type Escherichia coli is almost complete and subtle (i.e. involving at least three regulatory mechanisms). [source]


Use of vibrational spectroscopy to study protein and DNA structure, hydration, and binding of biomolecules: A combined theoretical and experimental approach

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 5 2006
K. J. Jalkanen
Abstract We report on our work with vibrational absorption, vibrational circular dichroism, Raman scattering, Raman optical activity, and surface-enhanced Raman spectroscopy to study protein and DNA structure, hydration, and the binding of ligands, drugs, pesticides, or herbicides via a combined theoretical and experimental approach. The systems we have studied systematically are the amino acids (L -alanine, L -tryptophan, and L -histidine), peptides (N -4271 acetyl L -alanine N,-methyl amide, N -acetyl L -tryptophan N,-methyl amide, N -acetyl L -histidine N,-methyl amide, L -alanyl L -alanine, tri- L -serine, N -acetyl L -alanine L -proline L -tyrosine N,-methyl amide, Leu-enkephalin, cyclo-(gly- L -pro)3, N -acetyl (L -alanine)nN,-methyl amide), 3-methyl indole, and a variety of small molecules (dichlobenil and 2,6-dochlorobenzamide) of relevance to the protein systems under study. We have used molecular mechanics, the SCC-DFTB, SCC-DFTB+disp, RHF, MP2, and DFT methodologies for the modeling studies with the goal of interpreting the experimentally measured vibrational spectra for these molecules to the greatest extent possible and to use this combined approach to understand the structure, function, and electronic properties of these molecules in their various environments. The application of these spectroscopies to biophysical and environmental assays is expanding, and therefore a thorough understanding of the phenomenon from a rigorous theoretical basis is required. In addition, we give some exciting and new preliminary results which allow us to extend our methods to even larger and more complex systems. The work presented here is the current state of the art to this ever and fast changing field of theoretical spectroscopic interpretation and use of VA, VCD, Raman, ROA, EA, and ECD spectroscopies. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 [source]


Insights on protein-DNA recognition by coarse grain modelling

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 15 2008
P. Poulain
Abstract Coarse grain modelling of macromolecules is a new approach, potentially well adapted to answer numerous issues, ranging from physics to biology. We propose here an original DNA coarse grain model specifically dedicated to protein-DNA docking, a crucial, but still largely unresolved, question in molecular biology. Using a representative set of protein-DNA complexes, we first show that our model is able to predict the interaction surface between the macromolecular partners taken in their bound form. In a second part, the impact of the DNA sequence and electrostatics, together with the DNA and protein conformations on docking is investigated. Our results strongly suggest that the overall DNA structure mainly contributes in discriminating the interaction site on cognate proteins. Direct electrostatic interactions between phosphate groups and amino acid side chains strengthen the binding. Overall, this work demonstrates that coarse grain modeling can reveal itself a precious auxiliary for a general and complete description and understanding of protein-DNA association mechanisms. © 2008 Wiley Periodicals, Inc. J Comput Chem, 2008 [source]


Theoretical study of the interaction between a high-valent manganese porphyrin oxyl-(hydroxo)-Mn(IV)-TMPyP and double-stranded DNA

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 7 2003
Philippe Arnaud
Abstract Cationic porphyrin derivatives such as meso-tetrakis(4- N -methylpyridinium)porphyrin, TMPyP, have been shown to interact with double-stranded DNA. The manganese derivative, Mn(III)-TMPyP, activated by an oxygen donor like potassium monopersulfate, provides an efficient DNA-cleaving system. Previous experimental work1 has shown that DNA cleavage by the Mn(III)-TMPyP/KHSO5 system was due to an oxidative attack, within the minor groove of B-DNA, at the C5, or C1, carbons of deoxyribose units. The aim of this study was to use molecular modeling to elucidate the specificity of the interactions between the transient active species oxyl-Mn(IV)-TMPyP and the DNA target. Geometric parameters, charges, and force field constants consistent with the AMBER 98 force field were calculated by DFT methods. Molecular modeling (mechanics and dynamic simulations) were performed for oxyl-(hydroxo)-Mn(IV)-TMPyP bound in the minor groove of the dodecamer d(5,-TCGTCAAACCGC)-d(5,-GCGGTTTGACGA). Geometry, interactions, and binding energy of the metalloporphyrin located at the A.T triplet region of the dodecamer were analyzed. These studies show no significant structural change of the DNA structure upon ligand binding. Mobility of the metalloporphyrin in the minor groove was restrained by the formation of a hydrogen bond between the hydroxo ligand trans to the metal-oxyl and a DNA phosphate, restricting the access of the oxyl group to the (pro-S) H atom at C5,. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 797,805, 2003 [source]


Detection of Texas red-labelled double-stranded DNA by non-enzymatic peroxyoxalate chemiluminescence

LUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 3 2001
F. Javier Alba
Abstract We have found previously that different fluorescent dyes cannot be efficiently excited by the bis(2,4,6-trichlorophenyl)oxalate (TCPO),H2O2 reaction when they are intercalated between the DNA bases or bound to the minor groove of the double helix. Here we show that the fluorescent dye Texas red, covalently bound to the 3, ends of double-stranded DNA molecules, exhibits a high emission intensity when excited by the TCPO,H2O2 reaction. In this case, the charge transfer between the intermediate produced in the peroxyoxalate chemiluminescent reaction and Texas red can take place because this fluorophore is not buried inside the DNA structure. We describe the application of this chemiluminescent reaction to the detection of blotted DNA on nylon membranes. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Comparative Study of Activities between Verbascoside and Rutin by Docking Method

MOLECULAR INFORMATICS, Issue 1 2003
Kun Gao
Abstract Verbascoside and rutin possess anti-cancer properties and are capable of repairing DNA damaged by oxygen radicals, acting as powerful antioxidants. Based on kinetic measurements and experiments on tumor cells, docking studies of the two ligand molecules with the receptor telomeric DNA fragments have been carried out. The docking calculations performed using JUMNA software showed that the both molecules can be docked into the minor groove of telomeric DNA and form complexes with suitable geometry for electron transfer between guanine radical and ligands. The reaction mechanism via the electron transfer process is further confirmed through energy calculations for transition states using MOPAC 93 program. Complexes can be formed without major distortion of DNA structure and are further stabilized by the interaction of DNA with the saccharide side-groups. By comparing their energies, the difference of activities of the two compounds can be explained. [source]


Horizontally acquired homologues of the nucleoid-associated protein H-NS: implications for gene regulation

MOLECULAR MICROBIOLOGY, Issue 2 2010
Charles J. Dorman
Summary H-NS is one of the most intensively studied members of the family of bacterial nucleoid-associated proteins. It is a DNA-binding protein with a preference for A+T-rich DNA sequences, and it represses the transcription of hundreds of genes in Gram-negative bacteria, including pathogens. In most cases where the issue has been investigated, the repressive activity of H-NS is opposed by the intervention of an antagonistically acting DNA-binding protein, a remodelling of local DNA structure, or a combination of these two. H-NS activity can also be modulated by protein,protein interaction with members of the Hha/YdgT protein family, molecules that share partial amino acid sequence similarity to the oligomerization domain of H-NS. Of particular interest is the ability of H-NS to interact with the full-length paralogue StpA or full-length orthologues that have been acquired by horizontal DNA transfer. In this issue of Molecular Microbiology, Müller et al. describe the H-NS orthologue Hfp and present evidence that in bacteria that acquire Hfp the range of activities of H-NS is modified with important implications for the physiology of the bacterium. [source]


DNA gyrase requirements distinguish the alternate pathways of Mu transposition

MOLECULAR MICROBIOLOGY, Issue 2 2003
Tanya D. Sokolsky
Summary The MuA transposase mediates transposition of bacteriophage Mu through two distinct mechanisms. The first integration event following infection occurs through a non-replicative mechanism. In contrast, during lytic growth, multiple rounds of replicative transposition amplify the phage genome. We have examined the influence of gyrase and DNA supercoiling on these two transposition pathways using both a gyrase-inhibiting drug and several distinct gyrase mutants. These experiments reveal that gyrase activity is not essential for integration; both lysogens and recombination intermediates are detected when gyrase is inhibited during Mu infection. In contrast, gyrase inhibition causes severe defects in replicative transposition. In two of the mutants, as well as in drug-treated cells, replicative transposition is almost completely blocked. Experiments probing for formation of MuA,DNA complexes in vivo reveal that this block occurs very early, during assembly of the transposase complex required for the catalytic steps of recombination. The findings establish that DNA structure-based signals are used differently for integrative and replicative transposition. We propose that transposase assembly, the committed step for recombination, has evolved to depend on different DNA /architectural signals to control the reaction outcome during these two distinct phases of the phage life cycle. [source]


Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler

MOLECULAR MICROBIOLOGY, Issue 4 2000
Vanessa Sperandio
Enteropathogenic Escherichia coli (EPEC) produces attaching and effacing lesions (AE) on epithelial cells. The genes involved in the formation of the AE lesions are contained within a pathogenicity island named the locus of enterocyte effacement (LEE). The LEE comprises 41 open reading frames organized in five major operons: LEE1, LEE2, LEE3, LEE4 and tir. The first gene of the LEE1 operon encodes a transcription activator of the other LEE operons that is called the LEE-encoded regulator (Ler). The LEE2 and LEE3 operons are divergently transcribed with overlapping ,10 promoter regions, and gene fusion studies have shown that they are both activated by Ler. Deletion analysis, using lacZ reporter fusions, of the LEE2 and LEE3 promoters demonstrated that deletions extending closer to the LEE2 transcription start site than ,247 bp lead to loss of activation by Ler, whereas only 70 bp upstream of the LEE3 transcription start site is required for Ler-mediated activation. We have purified Ler as a His-tagged protein and used it to perform DNA-binding assays with LEE2 and LEE3. We observed that Ler bound to a DNA fragment containing the ,300 to +1 region of LEE2; however, it failed to bind to a DNA fragment containing the ,300 to +1 region of LEE3, suggesting that Ler activates both operons by only binding to the regulatory region upstream of LEE2. The Ler-activatable LEE3::lacZ fusions extended to what would be ,246 bp of the LEE2 operon. A lacZ fusion from the ,300 to +1 region of LEE3 failed to be activated by Ler, consistent with our hypothesis that Ler activates the expression of LEE2 and LEE3 by binding to a region located downstream of the LEE3 transcription start site. DNase I footprinting revealed that Ler protected a region of 121 bp upstream of LEE2. Purified Ler mutated in the coiled-coil domain was unable to activate transcription and to bind to the LEE2 regulatory region. These data indicate that Ler may bind as a multimer to LEE2 and activate both divergent operons by a novel mechanism potentially involving changes in the DNA structure. [source]


Validation of Phage T7 Biological Dosimeter by Quantitative Polymerase Chain Reaction Using Short and Long Segments of Phage T7 DNA ,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2003
M. Hegedüs
ABSTRACT Phage T7 can be used as a biological dosimeter; its reading, the biologically effective dose (BED), is proportional to the inactivation rate |ln (n/n0)|. For the measurement of DNA damage in phage T7 dosimeter, a quantitative polymerase chain reaction (QPCR) methodology has been developed using 555 and 3826 bp fragments of phage T7 DNA. Both optimized reactions are so robust that an equally good amplification was obtained when intact phage T7 was used in the reaction mixture. In the biologically relevant dose range a good correlation was obtained between the BED of the phage T7 dosimeter and the amount of ultraviolet (UV) photoproducts determined by QPCR with both fragments under the effect of five various UV sources. A significant decrease in the yield of photoproducts was detected by QPCR in isolated T7 DNA and in heated phage compared with intraphage DNA with all irradiation sources. Because the yield of photoproducts was the same in B, C and A conformational states of T7 DNA, a possible explanation for modulation of photoproduct frequency in intraphage T7 DNA is that the presence of bound phage proteins induces an alteration in DNA structure that can result in increased induction of photoproducts. [source]


Reversal of the silencing of tetracycline-controlled genes requires the coordinate action of distinctly acting transcription factors

THE JOURNAL OF GENE MEDICINE, Issue 1 2005
Renata Pankiewicz
Abstract Background Regulation of genes transferred to eukaryotic organisms is often limited by the lack of consistent expression levels in all transduced cells, which may result in part from epigenetic gene silencing effects. This reduces the efficacy of ligand-controlled gene switches designed for somatic gene transfers such as gene therapy. Methods A doxycycline-controlled transgene was stably introduced in human cells, and clones were screened for epigenetic silencing of the transgene. Various regulatory proteins were targeted to the silent transgene, to identify those that would mediate regulation by doxycycline. Results A doxycycline-controlled minimal promoter was found to be prone to gene silencing, which prevents activation by a fusion of the bacterial TetR DNA-binding domain with the VP16 activator. DNA modification studies indicated that the silenced transgene adopts a poorly accessible chromatin structure. Several cellular transcriptional activators were found to restore an accessible DNA structure when targeted to the silent transgene, and they cooperated with Tet-VP16 to mediate regulation by doxycycline. Conclusions Reversal of the silencing of a tetracycline-regulated minimal promoter requires a chromatin-remodeling activity for subsequent promoter activation by the Tet-VP16 fusion protein. Thus, distinct regulatory elements may be combined to obtain long-term regulation and persistent expression of exogenous genes in eukaryotic cells. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A glossary of DNA structures from A to Z

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2003
Anirban Ghosh
The right-handed double-helical Watson,Crick model for B-­form DNA is the most commonly known DNA structure. In addition to this classic structure, several other forms of DNA have been observed and it is clear that the DNA molecule can assume different structures depending on the base sequence and environment. The various forms of DNA have been identified as A, B, C etc. In fact, a detailed inspection of the literature reveals that only the letters F, Q, U, V and Y are now available to describe any new DNA structure that may appear in the future. It is also apparent that it may be more relevant to talk about the A, B or C type dinucleotide steps, since several recent structures show mixtures of various different geometries and a careful analysis is essential before identifying it as a `new structure'. This review provides a glossary of currently identified DNA structures and is quite timely as it outlines the present understanding of DNA structure exactly 50,years after the original discovery of DNA structure by Watson and Crick. [source]


Evaluation of genotoxic effects in human leukocytes after in vitro exposure to 1950 MHz UMTS radiofrequency field

BIOELECTROMAGNETICS, Issue 3 2008
O. Zeni
Abstract In the present study the third generation wireless technology of the Universal Mobile Telecommunication System (UMTS) signal was investigated for the induction of genotoxic effects in human leukocytes. Peripheral blood from six healthy donors was used and, for each donor, intermittent exposures (6 min RF on, 2 h RF off) at the frequency of 1950 MHz were conducted at a specific absorption rate of 2.2 W/kg. The exposures were performed in a transverse electro magnetic (TEM) cell hosted in an incubator under strictly controlled conditions of temperature and dosimetry. Following long duration intermittent RF exposures (from 24 to 68 h) in different stages of the cell cycle, micronucleus formation was evaluated by applying the cytokinesis block micronucleus assay, which also provides information on cell division kinetics. Primary DNA damage (strand breaks/alkali labile sites) was also investigated following 24 h of intermittent RF exposures, by applying the alkaline single cell gel electrophoresis (SCG)/comet assay. Positive controls were included by treating cell cultures with Mitomycin-C and methylmethanesulfonate for micronucleus and comet assays, respectively. The results obtained indicate that intermittent exposures of human lymphocytes in different stages of cell cycle do not induce either an increase in micronucleated cells, or change in cell cycle kinetics; moreover, 24 h intermittent exposures also fail to affect DNA structure of human leukocytes soon after the exposures, likely indicating that repairable DNA damage was not induced. Bioelectromagnetics 29:177,184, 2008. © 2007 Wiley-Liss, Inc. [source]


In vitro expansion of DNA triplet repeats with bulge binders and different DNA polymerases

FEBS JOURNAL, Issue 18 2008
Di Ouyang
The expansion of DNA repeat sequences is associated with many genetic diseases in humans. Simple bulge DNA structures have been implicated as intermediates in DNA slippage within the DNA repeat regions. To probe the possible role of bulged structures in DNA slippage, we designed and synthesized a pair of simple chiral spirocyclic compounds [Xi Z, Ouyang D & Mu HT (2006) Bioorg Med Chem Lett16, 1180,1184], DDI-1A and DDI-1B, which mimic the molecular architecture of the enediyne antitumor antibiotic neocarzinostatin chromophore. Both compounds strongly stimulated slippage in various DNA repeats in vitro. Enhanced slippage synthesis was found to be synchronous for primer and template. CD spectra and UV thermal stability studies supported the idea that DDI-1A and DDI-1B exhibited selective binding to the DNA bulge and induced a significant conformational change in bulge DNA. The proposed mechanism for the observed in vitro expansion of long DNA is discussed. [source]


Evaluation of potential regulatory elements identified as DNase I hypersensitive sites in the CFTR gene

FEBS JOURNAL, Issue 2 2002
Marios Phylactides
The cystic fibrosis transmembrane conductance regulator (CFTR) gene shows a complex pattern of expression, with temporal and spatial regulation that is not accounted for by elements in the promoter. One approach to identifying the regulatory elements for CFTR is the mapping of DNase I hypersensitive sites (DHS) within the locus. We previously identified at least 12 clusters of DHS across the CFTR gene and here further evaluate DHS in introns 2, 3, 10, 16, 17a, 18, 20 and 21 to assess their functional importance in regulation of CFTR gene expression. Transient transfections of enhan- cer/reporter constructs containing the DHS regions showed that those in introns 20 and 21 augmented the activity of the CFTR promoter. Structural analysis of the DNA sequence at the DHS suggested that only the one intron 21 might be caused by inherent DNA structures. Cell specificity of the DHS suggested a role for the DHS in introns 2 and 18 in CFTR expression in some pancreatic duct cells. Finally, regulatory elements at the DHS in introns 10 and 18 may contribute to upregulation of CFTR gene transcription by forskolin and mitomycin C, respectively. These data support a model of regulation of expression of the CFTR gene in which multiple elements contribute to tightly co-ordinated expression in vivo. [source]


A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis

ADVANCED FUNCTIONAL MATERIALS, Issue 3 2010
Shijiang He
Abstract Coupling nanomaterials with biomolecular recognition events represents a new direction in nanotechnology toward the development of novel molecular diagnostic tools. Here a graphene oxide (GO)-based multicolor fluorescent DNA nanoprobe that allows rapid, sensitive, and selective detection of DNA targets in homogeneous solution by exploiting interactions between GO and DNA molecules is reported. Because of the extraordinarily high quenching efficiency of GO, the fluorescent ssDNA probe exhibits minimal background fluorescence, while strong emission is observed when it forms a double helix with the specific targets, leading to a high signal-to-background ratio. Importantly, the large planar surface of GO allows simultaneous quenching of multiple DNA probes labeled with different dyes, leading to a multicolor sensor for the detection of multiple DNA targets in the same solution. It is also demonstrated that this GO-based sensing platform is suitable for the detection of a range of analytes when complemented with the use of functional DNA structures. [source]


Growth rate dependent numbers of SeqA structures organize the multiple replication forks in rapidly growing Escherichia coli

GENES TO CELLS, Issue 5 2009
Morigen
When the bacterium Escherichia coli is grown in rich medium, the replication and segregation periods may span two, three or four generations and cells may contain up to 24 replication forks. The newly synthesized, hemimethylated DNA at each fork is bound by SeqA protein. The SeqA,DNA structures form distinct foci that can be observed by immunofluorescence microscopy. The numbers of foci were lower than the numbers of replication forks indicating fork co-localization. The extent of co-localization correlated with the extent of replication cycle overlap in wild-type cells. No abrupt increase in the numbers of foci occurred at the time of initiation of replication, suggesting that new replication forks bind to existing SeqA structures. Manipulations with replication control mechanisms that led to extension or reduction of the replication period and number of forks, did not lead to changes in the numbers of SeqA foci per cell. The results indicate that the number of SeqA foci is not directly governed by the number of replication forks, and supports the idea that new DNA may be ,captured' by existing SeqA structures. [source]


The reconstituted human Chl12-RFC complex functions as a second PCNA loader

GENES TO CELLS, Issue 4 2004
Yasushi Shiomi
The sister chromatid cohesion factor Chl12 shares amino acid sequence similarity with RFC1, the largest subunit of replication factor C (RFC), and forms a clamp loader complex in association with the RFC small subunits RFCs2-5. It has been shown that the human Chl12-RFC complex, reconstituted with a baculovirus expression system, specifically interacts with human proliferating cell nuclear antigen (PCNA). The purified Chl12-RFC complex is structurally indistinguishable from RFC, as shown by electron microscopy, and it exhibits DNA-stimulated ATPase activity that is further enhanced by PCNA, and by DNA binding activity on specific primer/template DNA structures. Furthermore, the complex loads PCNA onto a circular DNA substrate, and stimulates DNA polymerase , DNA synthesis on a primed M13 single-stranded template in the presence of purified replication proteins. However, it cannot substitute for RFC in promoting simian virus 40 DNA replication in vitro with crude fractions. These results demonstrate that the human Chl12-RFC complex is a second PCNA loader and that its roles in replication are clearly distinguishable from those of RFC. [source]


Telomere Higher-Order Structure and Genomic Instability

IUBMB LIFE, Issue 8 2003
Terace Fletcher
Abstract Telomeres, nucleoprotein complexes at the end of eukaryotic chromosomes, have vital roles in chromosome integrity. Telomere chromatin structure is both intricate and dynamic allowing for a variety of responses to several stimuli. A critical determinant in telomere structure is the G-strand overhang. Facilitated by telomeric proteins, the G-strand overhang stabilizes telomere higher-order assemblies most likely by adopting unusual DNA structures. These structures influence activities that occur at the chromosome end. Dysfunctional telomeres induce signals resulting in cell growth arrest or death. To overcome telomere dysfunction, cancer cells activate the DNA polymerase, telomerase. The presence of telomerase at the telomere may establish a particular telomeric state. If the chromosome ends of cancer and normal cells exist in different states, cancer-specific telomere structures would offer a unique chemotherapeutic target. IUBMB Life, 55: 443-449, 2003 [source]


Intrinsic genomic instability from naturally occurring DNA structures: An introduction to the special issue

MOLECULAR CARCINOGENESIS, Issue 4 2009
Karen M. Vasquez Guest editor
[source]


Transcriptional processing of G4 DNA

MOLECULAR CARCINOGENESIS, Issue 4 2009
Silvia Tornaletti
Abstract Genomic DNA sequences with the ability to assume non-B form secondary structures have been recently shown to be particularly susceptible to genetic instability, an early contributing factor in human disease and cancer development. Transcription appears to play a central role in formation of these structures and in promoting instability at these sites. The subpathway of nucleotide excision DNA repair, transcription-coupled DNA repair (TCR), removes transcription-arresting damage from the transcribed strands of expressed genes, but little is known about how non-canonical DNA structures are processed when encountered by the transcription machinery. If such structures arrest transcription, they may elicit "gratuitous" TCR in which the resulting reiterative and futile repair replication might generate a significant level of mutagenesis in a frequently transcribed gene because of faulty processing in the area of transcription arrest. Here we will describe our current understanding of how TCR may be elicited at non-B DNA structures and summarize recent literature describing the behavior of RNA polymerases when encountering non-canonical DNA structures, with particular emphasis on quadruplex DNA. © 2009 Wiley-Liss, Inc. [source]


DIBER: protein, DNA or both?

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2010
Grzegorz Chojnowski
The program DIBER (an acronym for DNA and FIBER) requires only native diffraction data to predict whether a crystal contains protein, B-form DNA or both. In standalone mode, the classification is based on the cube root of the reciprocal unit-cell volume and the largest local average of diffraction intensities at 3.4,Å resolution. In combined mode, the Phaser rotation-function score (for the 3.4,Å shell and a canonical B-DNA search model) is also taken into account. In standalone (combined) mode, DIBER classifies 87.4 ± 0.2% (90.2 ± 0.3%) of protein, 69.1 ± 0.3% (78.8 ± 0.3%) of protein,DNA and 92.7 ± 0.2% (90.0 ± 0.2%) of DNA crystals correctly. Reliable predictions with a correct classification rate above 80% are possible for 36.8 ± 1.0% (60.2 ± 0.4%) of the protein, 43.6 ± 0.5% (59.8 ± 0.3%) of the protein,DNA and 83.3 ± 0.3% (82.6 ± 0.4%) of the DNA structures. Surprisingly, selective use of the diffraction data in the 3.4,Å shell improves the overall success rate of the combined-mode classification. An open-source CCP4/CCP4i -compatible version of DIBER is available from the authors' website at http://www.iimcb.gov.pl/diber and is subject to the GNU Public License. [source]


A glossary of DNA structures from A to Z

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 4 2003
Anirban Ghosh
The right-handed double-helical Watson,Crick model for B-­form DNA is the most commonly known DNA structure. In addition to this classic structure, several other forms of DNA have been observed and it is clear that the DNA molecule can assume different structures depending on the base sequence and environment. The various forms of DNA have been identified as A, B, C etc. In fact, a detailed inspection of the literature reveals that only the letters F, Q, U, V and Y are now available to describe any new DNA structure that may appear in the future. It is also apparent that it may be more relevant to talk about the A, B or C type dinucleotide steps, since several recent structures show mixtures of various different geometries and a careful analysis is essential before identifying it as a `new structure'. This review provides a glossary of currently identified DNA structures and is quite timely as it outlines the present understanding of DNA structure exactly 50,years after the original discovery of DNA structure by Watson and Crick. [source]


Diverse modes of 5,-[4-(aminoiminomethyl)phenyl]-[2,2,-bifuran]-5-carboximidamide (DB832) interaction with multi-stranded DNA structures

BIOPOLYMERS, Issue 1 2010
Dmitry N. Kaluzhny
Abstract The modes of binding of 5,-[4-(aminoiminomethyl)phenyl]-[2,2,-Bifuran]-5-carboximidamide (DB832) to multi-stranded DNAs: human telomere quadruplex, monomolecular R-triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi-stranded DNAs was found to be greater (Kass , 107M,1) than to the duplex DNA (Kass , 2 × 105M,1). A considerable stabilizing effect of DB832 binding on R-triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi-stranded DNA depending on their specific conformational features: recombination-type R-triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi-sranded DNA conformations and for R-triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8,20, 2010. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Solution Structure and Stability of Tryptophan-Containing Nucleopeptide Duplexes

CHEMBIOCHEM, Issue 1 2003
Irene Gómez-Pinto
Abstract Covalently linked peptide,oligonucleotide hybrids were used as models for studying tryptophan,DNA interactions. The structure and stability of several hybrids in which peptides and oligonucleotides are linked through a phosphodiester bond between the hydroxy group of a homoserine (Hse) side chain and the 3,-end of the oligonucleotide, have been studied by both NMR and CD spectroscopy and by restrained molecular dynamics methods. The three-dimensional solution structure of the complex between Ac-Lys-Trp-Lys-Hse(p3,dGCATCG)-Ala-OH (p=phosphate, Ac=acetyl) and its complementary strand 5,dCGTAGC has been determined from a set of 276 experimental NOE distances and 33 dihedral angle constraints. The oligonucleotide structure is a well-defined duplex that belongs to the B-form family of DNA structures. The covalently linked peptide adopts a folded structure in which the tryptophan side chain stacks against the 3,-terminal guanine moiety, which forms a cap at the end of the duplex. This stacking interaction, which resembles other tryptophan,nucleobase interactions observed in some protein,DNA complexes, is not observed in the single-stranded form of Ac-Lys-Trp-Lys-Hse(p3,dGCATCG)-Ala-OH, where the peptide chain is completely disordered. A comparison with the pure DNA duplex, d(5,GCTACG3,),(5,CGTAGC3,), indicates that the interaction between the peptide and the DNA contributes to the stability of the nucleopeptide duplex. The different contributions that stabilize this complex have been evaluated by studying other nucleopeptide compounds with related sequences. [source]


A QM/MM Study of Cisplatin,DNA Oligonucleotides: From Simple Models to Realistic Systems

CHEMISTRY - A EUROPEAN JOURNAL, Issue 22 2006
Arturo Robertazzi
Abstract QM/MM calculations were employed to investigate the role of hydrogen bonding and , stacking in several single- and double-stranded cisplatin,DNA structures. Computed geometrical parameters reproduce experimental structures of cisplatin and its complex with guanine,phosphate,guanine. Following QM/MM optimisation, single-point DFT calculations allowed estimation of intermolecular forces through atoms in molecules (AIM) analysis. Binding energies of platinated single-strand DNA qualitatively agree with myriad experimental and theoretical studies showing that complexes of guanine are stronger than those of adenine. The topology of all studied complexes confirms that platination strongly affects the stability of both single- and double-stranded DNAs: PtNH,,,X (X = N or O) interactions are ubiquitous in these complexes and account for over 70,% of all H-bonding interactions. The , stacking is greatly reduced by both mono- and bifunctional complexation: the former causes a loss of about 3,4 kcal,mol,1, whereas the latter leads to more drastic disruption. The effect of platination on Watson,Crick GC is similar to that found in previous studies: major redistribution of energy occurs, but the overall stability is barely affected. The BH&H/AMBER/AIM approach was also used to study platination of a double-stranded DNA octamer d(CCTG*G*TCC),d(GGACCAGG), for which an experimental structure is available. Comparison between theory and experiment is satisfactory, and also reproduces previous DFT-based studies of analogous structures. The effect of platination is similar to that seen in model systems, although the effect on GC pairing was more pronounced. These calculations also reveal weaker, secondary interactions of the form Pt,,,O and Pt,,,N, detected in several single- and double-stranded DNA. [source]