DNA Repair Deficiencies (dna + repair_deficiency)

Distribution by Scientific Domains


Selected Abstracts


DNA repair and mutagenesis in Werner syndrome ,

ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, Issue 2-3 2001
Vilhelm A. Bohr
Abstract Werner syndrome (WS) is the hallmark premature aging syndrome in which the patients appear much older than their actual chronological age. The disorder is associated with significantly increased genome instability and with transcriptional deficiencies. There has been some uncertainty about whether WS cells are defective in DNA repair. We thus examined repair in vitro in nuclear and mitochondrial DNA. Whereas cellular studies so far do not show significant DNA repair deficiencies, biochemical studies with the Werner protein clearly indicate that it plays a role in DNA repair. Environ. Mol. Mutagen. 38:227,234, 2001. Published 2001 Wiley-Liss, Inc. [source]


Lessons learned from DNA repair defective syndromes

EXPERIMENTAL DERMATOLOGY, Issue 6 2007
Kai-Martin Thoms
Abstract:, Genomic instability is the driving force behind cancer development. Human syndromes with DNA repair deficiencies comprise unique opportunities to study the clinical consequences of faulty genome maintenance leading to premature aging and premature cancer development. These syndromes include chromosomal breakage syndromes with defects in DNA damage signal transduction and double-strand break repair, mismatch repair defective syndromes as well as nucleotide excision repair defective syndromes. The same genes that are severely affected in these model diseases may harbour more subtle variations in the ,healthy' normal population leading to genomic instability, cancer development, and accelerated aging at later stages of life. Thus, studying those syndromes and the molecular mechanisms behind can significantly contribute to our understanding of (skin) cancerogenesis as well as to the development of novel individualized preventive and therapeutic anticancer strategies. The establishment of centers of excellence for studying rare genetic model diseases may be helpful in this direction. [source]


Congenital DNA repair deficiency results in protection against renal ischemia reperfusion injury in mice

AGING CELL, Issue 2 2009
Denis Susa
Summary Cockayne syndrome and other segmental progerias with inborn defects in DNA repair mechanisms are thought to be due in part to hypersensitivity to endogenous oxidative DNA damage. The accelerated aging-like symptoms of this disorder include dysmyelination within the central nervous system, progressive sensineuronal hearing loss and retinal degeneration. We tested the effects of congenital nucleotide excision DNA repair deficiency on acute oxidative stress sensitivity in vivo. Surprisingly, we found mouse models of Cockayne syndrome less susceptible than wild type animals to surgically induced renal ischemia reperfusion injury, a multifactorial injury mediated in part by oxidative damage. Renal failure-related mortality was significantly reduced in Csb,/, mice, kidney function was improved and proliferation was significantly higher in the regenerative phase following ischemic injury. Protection from ischemic damage correlated with improved baseline glucose tolerance and insulin sensitivity and a reduced inflammatory response following injury. Protection was further associated with genetic ablation of a different Cockayne syndrome-associated gene, Csa. Our data provide the first functional in vivo evidence that congenital DNA repair deficiency can induce protection from acute stress in at least one organ. This suggests that while specific types of unrepaired endogenous DNA damage may lead to detrimental effects in certain tissues, they may at the same time elicit beneficial adaptive changes in others and thus contribute to the tissue specificity of disease symptoms. [source]