Cytosolic Compartment (cytosolic + compartment)

Distribution by Scientific Domains


Selected Abstracts


pH-dependent translocation of ,-tocopherol transfer protein (,-TTP) between hepatic cytosol and late endosomes

GENES TO CELLS, Issue 10 2003
Masakuni Horiguchi
Background:, ,-Tocopherol transfer protein (,-TTP), a member of the Sec14 protein family, plays an important role in transporting ,-tocopherol, a major lipid-soluble anti-oxidant, in the cytosolic compartment of hepatocytes and is known as a product of the causative gene for familial isolated vitamin E deficiency. It has been shown that the secretion of hepatocyte ,-tocopherol taken up with plasma lipoproteins is facilitated by ,-TTP. To explore the mechanism of ,-TTP mediated ,-tocopherol secretion, we investigated drugs which may affect this secretion. Results:, We found that, in a hepatocyte cell culture system, intracellular ,-tocopherol transport is impaired by chloroquine, an agent known for its function of elevating the pH in acidic compartments. Under chloroquine treatment, the diffuse cytosolic distribution of ,-TTP changes to a punctate pattern. Double-staining experiments with endocytosis markers revealed that ,-TTP accumulates transiently on the cytoplasmic surface of late endosomal membranes. This phenomenon is specific for hepatoma cell lines or primarily cultured hepatocytes. Other members of the Sec14 family, such as cellular retinaldehyde-binding protein (CRALBP) and supernatant protein factor (SPF), do not show this accumulation. Furthermore, we elucidate that the obligatory amino acid sequence for this function is located between amino acids 21 and 50, upstream of the N-terminal end of the lipid-binding domain. Conclusion:, We hypothesize that a liver-specific target molecule for ,-TTP exists on the late endosomal membrane surface. This transient binding may explain the mechanism of how ,-tocopherol is transferred from late endosomes to cytosolic ,-TTP. [source]


Matrix Regulation of Skeletal Cell Apoptosis II: Role of Arg-Gly-Asp-Containing Peptides

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2002
Robert L. Perlot Jr.
Abstract This investigation was based on the assumption that arg-gly-asp (RGD)-containing peptides are released from the extracellular matrix of bone and cartilage during the remodeling cycle. We asked the question: Can RGD peptides influence skeletal cell viability? Primary human osteoblasts, mouse MC-3T3-E1 cells, and chick chondrocytes were incubated with purified RGD-containing peptides and cell viability was determined. The RGD peptide did not kill osteoblasts, chondrocytes, or MC-3T3-E1 cells. In contrast, RGDS and GRGDSP peptides killed all three cell types. Osteoblast death was quite rapid, occurring within 6 h of treatment. transferase uridyl mediated nick end labeling (TUNEL) and transmission electron microscopy (TEM) analysis indicated that death was mediated by apoptosis. To learn if mitochondria transduced the death signal, cells were treated with RGDS and organelle function was evaluated using a voltage-sensitive fluorescent probe. It was observed that there was no net loss of fluorescence and, hence, it was concluded that mitochondria were not the primary effectors of the apoptotic response. Experiments were performed with enzyme inhibitors to determine the import of the caspase pathway on RGDS-mediated osteoblast apoptosis. Results of these studies, as well as a study conducted using a fluorescent substrate, pointed to caspase 3 mediating the effector stage of the apoptotic process. Finally, using a purified labeled-RGDS peptide, we showed that the molecule was not restricted by the plasma membrane because it was accumulated in the cytosolic compartment. Results of the investigation support the view that resorption of the extracellular matrix generates peptide products that can induce apoptosis of vicinal cells. [source]


Enhancement of Diphtheria Toxin Potency by Replacement of the Receptor Binding Domain with Tetanus Toxin C-Fragment

JOURNAL OF NEUROCHEMISTRY, Issue 6 2000
A Potential Vector for Delivering Heterologous Proteins to Neurons
Abstract: This study describes the expression, purification, and characterization of a recombinant fusion toxin, DAB389TTC, composed of the catalytic and membrane translocation domains of diphtheria toxin (DAB389) linked to the receptor binding fragment of tetanus toxin (C-fragment). As determined by its ability to inhibit cellular protein synthesis in primary neuron cultures, DAB389TTC was , 1,000-fold more cytotoxic than native diphtheria toxin or the previously described fusion toxin, DAB389MSH. The cytotoxic effect of DAB389TTC on cultured cells was specific toward neuronal-type cells and was blocked by coincubation of the chimeric toxin with tetanus antitoxin. The toxicity of DAB389TTC, like that of diphtheria toxin, was dependent on passage through an acidic compartment and ADP-ribosyltransferase activity of the DAB389 catalytic fragment. These results suggest that a catalytically inactive form of DAB389TTC may be useful as a nonviral vehicle to deliver exogenous proteins to the cytosolic compartment of neurons. [source]


cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes

THE JOURNAL OF PHYSIOLOGY, Issue 3 2007
Sunita Warrier
Many different receptors can stimulate cAMP synthesis in the heart, but not all elicit the same functional responses. For example, it has been recognized for some time that prostaglandins such as PGE1 increase cAMP production and activate PKA, but they do not elicit responses like those produced by ,-adrenergic receptor (,AR) agonists such as isoproterenol (isoprenaline), even though both stimulate the same signalling pathway. In the present study, we confirm that isoproterenol, but not PGE1, is able to produce cAMP-dependent stimulation of the L-type Ca2+ current in guinea pig ventricular myocytes. This is despite finding evidence that these cells express EP4 prostaglandin receptors, which are known to activate Gs -dependent signalling pathways. Using fluorescence resonance energy transfer-based biosensors that are either freely diffusible or bound to A kinase anchoring proteins, we demonstrate that the difference is due to the ability of isoproterenol to stimulate cAMP production in cytosolic and caveolar compartments of intact cardiac myocytes, while PGE1 only stimulates cAMP production in the cytosolic compartment. Unlike other receptor-mediated responses, compartmentation of PGE1 responses was not due to concurrent activation of a Gi -dependent signalling pathway or phosphodiesterase activity. Instead, compartmentation of the PGE1 response in cardiac myocytes appears to be due to transient stimulation of cAMP in a microdomain that can communicate directly with the bulk cytosolic compartment but not the caveolar compartment associated with ,AR regulation of L-type Ca2+ channel function. [source]