Cytoplasmic Streaming (cytoplasmic + streaming)

Distribution by Scientific Domains


Selected Abstracts


The role of cytoplasmic streaming in symplastic transport

PLANT CELL & ENVIRONMENT, Issue 1 2003
W. F. PICKARD
ABSTRACT The distributing of materials throughout a symplastic domain must involve at least two classes of transport steps: plasmodesmatal and cytoplasmic. To underpin the latter, the most obvious candidate mechanisms are cytoplasmic streaming and diffusion. The thesis will be here advanced that, although both candidates clearly do transport cytoplasmic entities, the cytoplasmic streaming per se is not of primary importance in symplastic transport but that its underlying molecular motor activity (of which the streaming is a readily visible consequence) is. Following brief tutorials on low Reynolds number flow, diffusion, and targeted intracytoplasmic transport, the hypothesis is broached that macromolecular and vesicular transport along actin trackways is both the cause of visible streaming and the essential metabolically driven cytoplasmic step in symplastic transport. The concluding discussion highlights four underdeveloped aspects of the active cytoplasmic step: (i) visualization of the real-time transport of messages and metabolites; (ii) enumeration of the entities trafficked; (iii) elucidation of the routing of the messages and metabolites within the cytoplasm; and (iv) transference of the trafficked entities from cytoplasm into plasmodesmata. [source]


Growth and movement of secondary plasmodia of Plasmodiophora brassicae in turnip suspension-culture cells

PLANT PATHOLOGY, Issue 1 2006
T. Asano
Growth of secondary plasmodia of the clubroot pathogen Plasmodiophora brassicae was studied in dual culture of P. brassicae and turnip suspension cells. Suspension culture of P. brassicae -infected turnip cells was achieved by using P. brassicae -infected callus in Murashige and Skoog medium supplemented with 0·1 mg 2,4-D L,1 and 0·02 mg kinetin L,1. The shape of secondary plasmodia in suspension cells was spherical-to-subspherical. A few young plasmodia divided and became numerous spherical, small plasmodia which eventually formed a plasmodial cluster. The plasmodia fused and became vegetative plasmodia. Infected cells were significantly larger than noninfected cells. Secondary plasmodia moved within transformed turnip suspension host cells by cytoplasmic streaming of the host cells. Secondary plasmodia divided in synchrony with the transformed turnip cells. [source]


Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment

THE PLANT JOURNAL, Issue 1 2008
Frank Sainsbury
Summary Transversely oriented cortical microtubules in elongating cells typically reorient themselves towards longitudinal directions at the end of cell elongation. We have investigated the reorientation mechanism along the outer epidermal wall in maturing leek (Allium porrum L.) leaves using a GFP-MBD microtubule reporter gene and fluorescence microscopy. Incubating leaf segments for 14,18 h with the anti-actin or anti-actomyosin agents, 20 ,m cytochalasin D or 20 mm 2,3-butanedione monoxime, inhibited the normal developmental reorientation of microtubules to the longitudinal direction. Observation of living cells revealed a small subpopulation of microtubules with their free ends swinging into oblique or longitudinal directions, before continuing to assemble in the new direction. Electron microscopy confirmed that longitudinal microtubules are partly detached from the plasma membrane. Incubating leaf segments with 0.2% 1°-butanol, an activator of phospholipase D, which has been implicated in plasma membrane,microtubule anchoring, promoted the reorientation, presumably by promoting microtubule detachment from the membrane. Stabilizing microtubules with 10 ,m taxol also promoted longitudinal orientation, even in the absence of cytoplasmic streaming. These results were consistent with confocal microscopy of live cells before and after drug treatments, which also revealed that the slow (days) global microtubule reorientation is superimposed over short-term (hours) regional cycling in a clockwise and an anti-clockwise direction. We propose that partial detachment of transverse microtubules from the plasma membrane in maturing cells exposes them to hydrodynamic forces of actomyosin-driven cytoplasmic streaming, which bends or shifts pivoting microtubules into longitudinal directions, and thus provides an impetus to push microtubule dynamics in the new direction. [source]