Cytoplasmic Domain (cytoplasmic + domain)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Characterization of L-plastin interaction with beta integrin and its regulation by micro-calpain,

CYTOSKELETON, Issue 5 2010
E. Le Goff
Abstract Recent evidences suggest that plastin/fimbrin is more than a simple actin cross-linking molecule. In this context and based on the fact that other members of the same family interact with transmembrane proteins, such as integrins, we have investigated a possible interaction between L-plastin and integrins. By combining coimmunoprecipitation of endogenous proteins and in vitro techniques based on solid phase and solution assays, we demonstrate that L-plastin is an additional binding partner for the ,-chain of integrin and confirmed that both proteins display some colocalization. We then show that L-plastin binds to the cytoplasmic domain of ,1 integrin and to ,1 and ,2 peptides. Using recombinant L-plastin domains, we demonstrate that the integrin-binding sites are not located in NH2 terminal part of L-plastin but rather in the two actin-binding domains. Using pull-down, cross-linking experiments, and enzyme-linked immunosorbent assay, we show that the L-plastin/integrin complex is regulated by ,-calpain cleavage and is not directly dissociated by calcium. Indeed, despite the ability of calpain to cleave both proteins, only the cleavage of , integrin hindered the formation of the L-plastin/integrin complex. We discuss these results in the light of the three-dimensional structure of the actin-binding domains of L-plastin. © 2010 Wiley-Liss, Inc. [source]


Cell type,specific expression of adenomatous polyposis coli in lung development, injury, and repair

DEVELOPMENTAL DYNAMICS, Issue 8 2010
Aimin Li
Abstract Adenomatous polyposis coli (Apc) is critical for Wnt signaling and cell migration. The current study examined Apc expression during lung development, injury, and repair. Apc was first detectable in smooth muscle layers in early lung morphogenesis, and was highly expressed in ciliated and neuroendocrine cells in the advanced stages. No Apc immunoreactivity was detected in Clara or basal cells, which function as stem/progenitor cell in adult lung. In ciliated cells, Apc is associated mainly with apical cytoplasmic domain. In response to naphthalene-induced injury, Apcpositive cells underwent squamous metaplasia, accompanied by changes in Apc subcellular distribution. In conclusion, both spatial and temporal expression of Apc is dynamically regulated during lung development and injury repair. Differential expression of Apc in progenitor vs. nonprogenitor cells suggests a functional role in cell-type specification. Subcellular localization changes of Apc in response to naphthalene injury suggest a role in cell shape and cell migration. Developmental Dynamics 239:2288,2297, 2010. © 2010 Wiley-Liss, Inc. [source]


Ephrin-A5 regulates the formation of the ascending midbrain dopaminergic pathways

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2009
Margaret A. Cooper
Abstract Dopaminergic neurons from the substantia nigra and the ventral tegmental area of the midbrain project to the caudate/putamen and nucleus accumbens, respectively, establishing the mesostriatal and the mesolimbic pathways. However, the mechanisms underlying the development of these pathways are not well understood. In the current study, the EphA5 receptor and its corresponding ligand, ephrin-A5, were shown to regulate dopaminergic axon outgrowth and influence the formation of the midbrain dopaminergic pathways. Using a strain of mutant mice in which the EphA5 cytoplasmic domain was replaced with ,-galactosidase, EphA5 protein expression was detected in both the ventral tegmental area and the substantia nigra of the midbrain. Ephrin-A5 was found in both the dorsolateral and the ventromedial regions of the striatum, suggesting a role in mediating dopaminergic axon-target interactions. In the presence of ephrin-A5, dopaminergic neurons extended longer neurites in in vitro coculture assays. Furthermore, in mice lacking ephrin-A5, retrograde tracing studies revealed that fewer neurons sent axons to the striatum. These observations indicate that the interactions between ephrin-A ligands and EphA receptors promote growth and targeting of the midbrain dopaminergic axons to the striatum. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source]


Cytosolic protein-protein interactions that regulate the amyloid precursor protein

DRUG DEVELOPMENT RESEARCH, Issue 2 2002
Shasta L. Sabo
Abstract Alzheimer disease (AD), a progressive neurodegenerative disease, is the most common cause of dementia in the elderly and is among the leading causes of death in adults. AD is characterized by two major pathological hallmarks, amyloid plaques and neurofibrillary tangles. For a number of reasons, amyloid plaque accumulation is widely thought to be the probable cause of AD. The amyloid plaque core is largely composed of an approximately 4-kDa peptide referred to as A,. A, is derived from its precursor, the Alzheimer amyloid protein precursor (APP), by endoproteolytic processing. APP is a type I integral membrane protein, with a long extracellular domain, one transmembrane domain, and a short (,50 amino acid) cytoplasmic tail. Despite intense efforts to decipher the function of APP, its normal physiological role has remained elusive. The carboxy-terminus of APP contains the sequence YENPTY, which is absolutely conserved across APP homologues and across species. The YENPTY sequence is important for regulation of APP processing and trafficking. Given the importance of the cytoplasmic domain in APP physiology, a number of laboratories have hypothesized that proteins that bind to the YENPTY sequence in the cytoplasmic domain of APP might regulate APP processing, trafficking, and/or function. In this article, we will discuss data revealing which proteins bind to the cytoplasmic domain of APP, how these binding-proteins regulate APP metabolism and function, and why such protein-protein interactions provide an exciting new target for therapeutic intervention in AD. Drug Dev. Res. 56:228,241, 2002. © 2002 Wiley-Liss, Inc. [source]


SLIC-1/sorting nexin,20: A novel sorting nexin that directs subcellular distribution of PSGL-1

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2008
Ulrich
Abstract P-Selectin glycoprotein ligand-1 (PSGL-1) is a mucin-like glycoprotein expressed on the surface of leukocytes that serves as the major ligand for the selectin family of adhesion molecules and functions in leukocyte tethering and rolling on activated endothelium and platelets. Previous studies have implicated the highly conserved cytoplasmic domain of PSGL-1 in regulating outside-in signaling of integrin activation. However, molecules that physically and functionally interact with this domain are not completely defined. Using a yeast two-hybrid screen with the cytoplasmic domain of PSGL-1 as bait, a novel protein designated selectin ligand interactor cytoplasmic-1 (SLIC-1) was isolated. Computer-based homology search revealed that SLIC-1 was the human orthologue for the previously identified mouse sorting nexin,20. Direct interaction between SLIC-1 and PSGL-1 was specific as indicated by co-immunoprecipitation and motif mapping. Colocalization experiments demonstrated that SLIC-1 contains a Phox homology domain that binds phosphoinositides and targets the PSGL-1/SLIC-1 complex to endosomes. Deficiency in the murine homologue of SLIC-1 did not modulate PSGL-1-dependent signaling nor alter neutrophil adhesion through PSGL-1. We conclude that SLIC-1 serves as a sorting molecule that cycles PSGL-1 into endosomes with no impact on leukocyte recruitment. [source]


A pseudosymmetric cell adhesion regulatory domain in the ,7 tail of the integrin ,4,7 that interacts with focal adhesion kinase and src

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 8 2006
Geoffrey
Abstract The ,7 integrins ,4,7 and ,E,7 play key roles in forming the gut-associated lymphoid tissue, and contribute to chronic inflammation. The ,4,7 integrin-mediated adhesion of activated lymphocytes is largely due to a transient increase in avidity from ligand-induced clustering of ,4,7 at the cell-surface. Here, we report that L and D enantiomers of a cell-permeable peptide YDRREY encompassing residues 735,740 of the cytoplasmic tail of the ,7 subunit inhibit the adhesion of T cells to ,7 integrin ligands. The YDRREY peptide abrogated mucosal addressin cell adhesion molecule-1-induced clustering of ,4,7 on the surface of activated T cells. A mutated form of the YDRREY peptide carrying either single or double conservative mutations at Tyr735Phe and Tyr740Phe was unable to inhibit T cell adhesion, suggesting that both tandem tyrosines are critical for activity. The YDRREY peptide was bound and phosphorylated by focal adhesion kinase and src, which may serve to sequester cytoskeletal proteins to the cytoplasmic domain of ,4,7. The quasi-palindromic sequence YDRREY within the ,7 cytoplasmic tail constitutes a cell adhesion regulatory domain that modulates the interaction of ,7-expressing leukocytes with their endothelial and epithelial ligands. Cell-permeable peptidomimetics based on this motif have utility as anti-inflammatory reagents for the treatment of chronic inflammatory disease. [source]


In vivo overexpression of CTLA-4 suppresses lymphoproliferative diseases and thymic negative selection

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2005
Shigekazu Takahashi
Abstract Cytotoxic T,lymphocyte antigen-4 (CTLA-4) induces major inhibitory signals for T,cell activation. From analyses of TCR-transgenic (Tg) CTLA-4-deficient mice, it has been believed that CTLA-4 does not affect thymocyte development. To focus upon the in vivo function of CTLA-4 in thymocyte development from a different aspect, we have established Tg mice expressing either full-length CTLA-4 (FL-Tg) or a mutant CTLA-4 lacking the cytoplasmic region (truncated, TR-Tg), and analyzed thymocyte development. TR-T,cells express much higher CTLA-4 on the cell surface than FL-T,cells, in which most CTLA-4 was localized in intracellular vesicles. While CTLA-4,/, mice exhibit lymphoproliferative disease, neither of the Tg mice with CTLA-4,/, background developed the disorder. Although the development of thymocytes appeared normal in both Tg mice, in vivo depletion of double-positive thymocytes by injection of anti-CD3 Ab as well as the elimination of minor lymphocyte-stimulating antigen-reactive thymocytes were impaired in FL-Tg mice but not in TR-Tg mice. Functionally, cross-linking of CTLA-4 on thymocytes from FL-Tg mice, but not from TR-Tg mice, inhibited proliferation. These results reveal a potential role of CTLA-4, through its cytoplasmic domain, in the negative selection of thymocytes and in the prevention of lymphoproliferative disease. [source]


Distinct contributions of different CD40 TRAF binding sites to CD154-induced dendritic cell maturation and IL-12 secretion

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 3 2003
Matthew
Abstract The mechanisms by which CD40 controls the maturation and antigen presentation functions of dendritic cells (DC) remains largely undefined in this critical cell type. To examine this question, we have employed retroviral transduction of primary bone marrow-derived mouse DC. Mutation of the distinct binding sites for TNF receptor-associated factor 6 (TRAF6) and for TRAF 2, 3, and 5 in the CD40 cytoplasmic domain revealed their independent contributions to DC maturation and activation of NF-,B. In contrast, disruption of the TRAF6 but not the TRAF 2,3,5 binding site markedly decreased IL-12 p40 secretion along with p38 and JNK activation in response to CD154 stimulation. These data document a clear bifurcation of the CD40 signaling cascade in primary DC at the level of thereceptor's two distinct and autonomous TRAF binding sites, and reveal the predominant role of the TRAF6 binding site in CD40-induced pro-inflammatory cytokine production by these cells. [source]


Rescue of ,2 subunit-deficient mice by transgenic overexpression of the GABAA receptor ,2S or ,2L subunit isoforms

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2000
Kristin Baer
Abstract The ,2 subunit is an important functional determinant of GABAA receptors and is essential for formation of high-affinity benzodiazepine binding sites and for synaptic clustering of major GABAA receptor subtypes along with gephyrin. There are two splice variants of the ,2 subunit, ,2 short (,2S) and ,2 long (,2L), the latter carrying in the cytoplasmic domain an additional eight amino acids with a putative phosphorylation site. Here, we show that transgenic mice expressing either the ,2S or ,2L subunit on a ,2 subunit-deficient background are phenotypically indistinguishable from wild-type. They express nearly normal levels of ,2 subunit protein and [3H]flumazenil binding sites. Likewise, the distribution, number and size of GABAA receptor clusters colocalized with gephyrin are similar to wild-type in both juvenile and adult mice. Our results indicate that the two ,2 subunit splice variants can substitute for each other and fulfil the basic functions of GABAA receptors, allowing in vivo studies that address isoform-specific roles in phosphorylation-dependent regulatory mechanisms. [source]


MODULARITY OF THE ANGIOSPERM FEMALE GAMETOPHYTE AND ITS BEARING ON THE EARLY EVOLUTION OF ENDOSPERM IN FLOWERING PLANTS

EVOLUTION, Issue 2 2003
William E. Friedman
Abstract The monosporic seven-celled/eight-nucleate Polygonumtype female gametophyte has long served as a focal point for discussion of the origin and subsequent evolution of the angiosperm female gametophyte. In Polygonumtype female gametophytes, two haploid female nuclei are incorporated into the central cell, and fusion of a sperm cell with the binucleate central cell produces a triploid endosperm with a complement of two maternal and one paternal genomes, characteristic of most angiosperms. We document the development of a four-celled/four-nucleate female gametophyte in Nuphar polysepala (Engelm.) and infer its presence in many other ancient lineages of angiosperms. The central cell of the female gametophyte in these taxa contains only one haploid nucleus; thus endosperm is diploid and has a ratio of one maternal to one paternal genome. Based on comparisons among flowering plants, we conclude that the angiosperm female gametophyte is constructed of modular developmental subunits. Each module is characterized by a common developmental pattern: (1) positioning of a single nucleus within a cytoplasmic domain (pole) of the female gametophyte; (2) two free-nuclear mitoses to yield four nuclei within that domain; and (3) partitioning of three uninucleate cells adjacent to the pole such that the fourth nucleus is confined to the central region of the female gametophyte (central cell). Within the basal angiosperm lineages Nymphaeales and Illiciales, female gametophytes are characterized by a single developmental module that produces a four-celled/four-nucleate structure with a haploid uninucleate central cell. A second pattern, typical of Amborella and the overwhelming majority of eumagnoliids, monocots, and eudicots, involves the early establishment of two developmental modules that produce a seven-celled/eight-nucleate female gametophyte with two haploid nuclei in the central cell. Comparative analysis of onto-genetic sequences suggests that the seven-celled female gametophyte (two modules) evolved by duplication and ectopic expression of an ancestral Nuphar- like developmental module within the chalazal domain of the female gametophyte. These analyses indicate that the first angiosperm female gametophytes were composed of a single developmental module, which upon double fertilization yielded a diploid endosperm. Early in angiosperm history this basic module was duplicated, and resulted in a seven-celled/eight-nucleate female gametophyte, which yielded a triploid endosperm with the characteristic 2:1 maternal to paternal genome ratio. [source]


Molecular physiology of SLC4 anion exchangers

EXPERIMENTAL PHYSIOLOGY, Issue 1 2006
Seth L. Alper
Plasmalemmal Cl,,HCO3, exchangers regulate intracellular pH and [Cl,] and cell volume. In polarized epithelial cells, they contribute also to transepithelial secretion and reabsorption of acid,base equivalents and of Cl,. Members of both the SLC4 and SLC26 mammalian gene families encode Na+ -independent Cl,,HCO3, exchangers. Human SLC4A1/AE1 mutations cause either the erythroid disorders spherocytic haemolytic anaemia or ovalocytosis, or distal renal tubular acidosis. SLC4A2/AE2 knockout mice die at weaning. Human SLC4A3/AE3 polymorphisms have been associated with seizure disorder. Although mammalian SLC4/AE polypeptides mediate only electroneutral Cl,,anion exchange, trout erythroid AE1 also promotes osmolyte transport and increased anion conductance. Mouse AE1 is required for DIDS-sensitive erythroid Cl, conductance, but definitive evidence for mediation of Cl, conductance is lacking. However, a single missense mutation allows AE1 to mediate both electrogenic SO42,,Cl, exchange or electroneutral, H+ -independent SO42,,SO42, exchange. In the Xenopus oocyte, the AE1 C-terminal cytoplasmic tail residues reported to bind carbonic anhydrase II are dispensable for Cl,,Cl, exchange, but required for Cl,,HCO3, exchange. AE2 is acutely and independently inhibited by intracellular and extracellular H+, and this regulation requires integrity of the most highly conserved sequence of the AE2 N-terminal cytoplasmic domain. Individual missense mutations within this and adjacent regions identify additional residues which acid-shift pHo sensitivity. These regions together are modelled to form contiguous surface patches on the AE2 cytoplasmic domain. In contrast, the N-terminal variant AE2c polypeptide exhibits an alkaline-shifted pHo sensitivity, as do certain transmembrane domain His mutants. AE2-mediated anion exchange is also stimulated by ammonium and by hypertonicity by a mechanism sensitive to inhibition by chelation of intracellular Ca2+ and by calmidazolium. This growing body of structure,function data, together with increased structural information, will advance mechanistic understanding of SLC4 anion exchangers. [source]


Golgi reassembly stacking protein 55 interacts with membrane-type (MT) 1-matrix metalloprotease (MMP) and furin and plays a role in the activation of the MT1-MMP zymogen

FEBS JOURNAL, Issue 15 2010
Christian Roghi
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a proteinase involved in the remodelling of extracellular matrix and the cleavage of a number of substrates. MT1-MMP is synthesized as a zymogen that requires intracellular post-translational cleavage to gain biological activity. Furin, a member of the pro-protein convertase family, has been implicated in the proteolytic removal of the MT1-MMP prodomain sequence. In the present study, we demonstrate a role for the peripheral Golgi matrix protein GRASP55 in the furin-dependent activation of MT1-MMP. MT1-MMP and furin were found to co-localize with Golgi reassembly stacking protein 55 (GRASP55). Further analysis revealed that GRASP55 associated with the cytoplasmic domain of both proteases and that the LLY573 motif in the MT1-MMP intracellular domain was crucial for the interaction with GRASP55. Overexpression of GRASP55 was found to enhance the formation of a complex between MT1-MMP and furin. Finally, we report that disruption of the interaction between GRASP55 and furin led to a reduction in pro-MT1-MMP activation. Taken together, these data suggest that GRASP55 may function as an adaptor protein coupling MT1-MMP with furin, thus leading to the activation of the zymogen. Structured digital abstract ,,MINT-7897990: Furin (uniprotkb:P09958) and GRASP55 (uniprotkb:Q9H8Y8) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897801: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with MT2-MMP (uniprotkb:P51511) by two hybrid (MI:0018) ,,MINT-7897821: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with MT3-MMP (uniprotkb:P51512) by two hybrid (MI:0018) ,,MINT-7897577: GRASP55 (uniprotkb:Q9R064) and MT1-MMP (uniprotkb:P50281) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897366: MT1-MMP (uniprotkb:P50281) physically interacts (MI:0915) with GRASP55 (uniprotkb:Q9H8Y8) by anti bait coimmunoprecipitation (MI:0006) ,,MINT-7897617, MINT-7897659, MINT-7897681, MINT-7897702, MINT-7897725, MINT-7898032, MINT-7898011, MINT-7897907, MINT-7897884: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with MT1-MMP (uniprotkb:P50281) by two hybrid (MI:0018) ,,MINT-7898002: MT1-MMP (uniprotkb:P50281) physically interacts (MI:0914) with Furin (uniprotkb:P09958) by anti bait coimmunoprecipitation (MI:0006) ,,MINT-7897500: MT1-MMP (uniprotkb:P50281) and Giantin (uniprotkb:Q14789) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897750, MINT-7897394: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with MT1-MMP (uniprotkb:P50281) by anti tag coimmunoprecipitation (MI:0007) ,,MINT-7897562: MT1-MMP (uniprotkb:P50281) and GRASP55 (uniprotkb:Q9H8Y8) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897512: TGN46 (uniprotkb:O43493) and MT1-MMP (uniprotkb:P50281) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897921, MINT-7897975: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with Furin (uniprotkb:P09958) by two hybrid (MI:0018) ,,MINT-7898052, MINT-7897410: MT1-MMP (uniprotkb:P50281) physically interacts (MI:0915) with GRASP55 (uniprotkb:Q9R064) by anti bait coimmunoprecipitation (MI:0006) ,,MINT-7897951: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with PC7 (uniprotkb:Q16549) by two hybrid (MI:0018) ,,MINT-7897866: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with MT5-MMP (uniprotkb:Q9Y5R2) by two hybrid (MI:0018) ,,MINT-7897633: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with TGFA (uniprotkb:P01135) by two hybrid (MI:0018) ,,MINT-7897551: GRASP55 (uniprotkb:Q9H8Y8) and Giantin (uniprotkb:Q14789) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7897938: GRASP55 (uniprotkb:Q9R064) physically interacts (MI:0915) with PC5/6B (uniprotkb:Q04592) by two hybrid (MI:0018) [source]


Modeling the three-dimensional structure of H+ -ATPase of Neurospora crassa

FEBS JOURNAL, Issue 21 2002
Proposal for a proton pathway from the analysis of internal cavities
Homology modeling in combination with transmembrane topology predictions are used to build the atomic model of Neurospora crassa plasma membrane H+ -ATPase, using as template the 2.6 Å crystal structure of rabbit sarcoplasmic reticulum Ca2+ -ATPase [Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. (2000) Nature 405, 647,655]. Comparison of the two calcium-binding sites in the crystal structure of Ca2+ -ATPase with the equivalent region in the H+ -ATPase model shows that the latter is devoid of most of the negatively charged groups required to bind the cations, suggesting a different role for this region. Using the built model, a pathway for proton transport is then proposed from computed locations of internal polar cavities, large enough to contain at least one water molecule. As a control, the same approach is applied to the high-resolution crystal structure of halorhodopsin and the proton pump bacteriorhodopsin. This revealed a striking correspondence between the positions of internal polar cavities, those of crystallographic water molecules and, in the case of bacteriorhodopsin, the residues mediating proton translocation. In our H+ -ATPase model, most of these cavities are in contact with residues previously shown to affect coupling of proton translocation to ATP hydrolysis. A string of six polar cavities identified in the cytoplasmic domain, the most accurate part of the model, suggests a proton entry path starting close to the phosphorylation site. Strikingly, members of the haloacid dehalogenase superfamily, which are close structural homologs of this domain but do not share the same function, display only one polar cavity in the vicinity of the conserved catalytic Asp residue. [source]


Localization of the mosaic transmembrane serine protease corin to heart myocytes

FEBS JOURNAL, Issue 23 2000
John D. Hooper
Corin cDNA encodes an unusual mosaic type II transmembrane serine protease, which possesses, in addition to a trypsin-like serine protease domain, two frizzled domains, eight low-density lipoprotein (LDL) receptor domains, a scavenger receptor domain, as well as an intracellular cytoplasmic domain. In in vitro experiments, recombinant human corin has recently been shown to activate pro-atrial natriuretic peptide (ANP), a cardiac hormone essential for the regulation of blood pressure. Here we report the first characterization of corin protein expression in heart tissue. We generated antibodies to two different peptides derived from unique regions of the corin polypeptide, which detected immunoreactive corin protein of approximately 125,135 kDa in lysates from human heart tissues. Immunostaining of sections of human heart showed corin expression was specifically localized to the cross striations of cardiac myocytes, with a pattern of expression consistent with an integral membrane localization. Corin was not detected in sections of skeletal or smooth muscle. Corin has been suggested to be a candidate gene for the rare congenital heart disease, total anomalous pulmonary venous return (TAPVR) as the corin gene colocalizes to the TAPVR locus on human chromosome 4. However examination of corin protein expression in TAPVR heart tissue did not show evidence of abnormal corin expression. The demonstrated corin protein expression by heart myocytes supports its proposed role as the pro-ANP convertase, and thus a potentially critical mediator of major cardiovascular diseases including hypertension and congestive heart failure. [source]


Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria

FEMS MICROBIOLOGY LETTERS, Issue 2 2006
Thorsten Mascher
Abstract Two-component signal-transducing systems (TCS) consist of a histidine kinase (HK) that senses a specific environmental stimulus, and a cognate response regulator (RR) that mediates the cellular response. Most HK are membrane-anchored proteins harboring two domains: An extracytoplasmic input and a cytoplasmic transmitter (or kinase) domain, separated by transmembrane helices that are crucial for the intramolecular information flow. In contrast to the cytoplasmic domain, the input domain is highly variable, reflecting the plethora of different signals sensed. Intramembrane-sensing HK (IM-HK) are characterized by their short input domain, consisting solely of two putative transmembane helices. They lack an extracytoplasmic domain, indicative for a sensing process at or from within the membrane interface. Most proteins sharing this domain architecture are found in Firmicutes bacteria. Two major groups can be differentiated based on sequence similarity and genomic context: (1) BceS-like IM-HK that are functionally and genetically linked to ABC transporters, and (2) LiaS-like IM-HK, as part of three-component systems. Most IM-HK sense cell envelope stress, and identified target genes are often involved in maintaining cell envelope integrity, mediating antibiotic resistance, or detoxification processes. Therefore, IM-HK seem to constitute an important mechanism of cell envelope stress response in low G+C Gram-positive bacteria. [source]


Molecular and cellular pathogenesis of X-linked lymphoproliferative disease

IMMUNOLOGICAL REVIEWS, Issue 1 2005
Kim E. Nichols
Summary:, X-linked lymphoproliferative disease (XLP) is an inherited immune defect caused by mutations in the Src homology 2 domain-containing gene 1A, which encodes the adapter protein, signaling lymphocytic activation molecule (SLAM)-associated protein (SAP). SAP is expressed in T cells, natural killer (NK) cells, and NKT cells, where it binds to the cytoplasmic domain of the surface receptor SLAM (CD150) and the related receptors, 2B4 (CD244), CD84, Ly9 (CD229), NK-T-B-antigen, and CD2-like receptor-activating cytotoxic T cells. SAP also binds to the Src family tyrosine kinase Fyn and recruits it to SLAM, which leads to the generation of downstream phosphotyrosine signals. While the roles of the SLAM family receptors are only beginning to be understood, experiments suggest that these molecules regulate important aspects of lymphocyte function, such as proliferation, cytokine secretion, cytotoxicity, and antibody production. Thus, in XLP patients who lack functional SAP, the SLAM family receptors may not signal properly. This property likely contributes to the phenotypes of XLP, including fulminant infectious mononucleosis, lymphoma, and hypogammaglobulinemia. Further studies of SAP and the SLAM family receptors will provide insights into XLP and elucidate the signaling events regulating lymphocyte ontogeny and function. [source]


Functional characterization of PGRP-LC1 of Anopheles gambiae through deletion and RNA interference

INSECT SCIENCE, Issue 6 2009
Yang Chen
Abstract, Peptidoglycan recognition proteins (PGRP) play an important role in innate immunity in insects through the activation of the Imd pathway, which has been shown to be required in the antibacterial response in insects and in the limitation of the number of Plasmodium berghei oocysts developing in mosquito midgut. The LC1 gene of the PRGP family in Anopheles gambiae produces many products through alternative splicing. In this work, we demonstrate that PGRP-LC1a alone is sufficient to activate the Imd pathway in the A. gambiae L3,5 cell line through a combination of terminal or internal deletions, and RNA interference against endogenous PGRP-LC products. In the absence of endogenous PGRP-LC proteins, the integrity of the cytoplasmic domain is necessary for LC1a function, while that of the extracellular domain is not. Moreover, the shorter the extracellular domain, the higher the activity for LC1a. However, the removal of either the cytoplasmic or the extracellular PGRP-binding domain has little impact on the activity of LC1a in the presence of endogenous PGRP-LC proteins. [source]


FGFR1/PI3K/AKT signaling pathway is a novel target for antiangiogenic effects of the cancer drug Fumagillin (TNP-470)

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007
Gregory J. Chen
Abstract Fibroblast growth factor-1 (FGF1), a prototypic member of the FGF family, is a potent angiogenic factor. Although FGF-stimulated angiogenesis has been extensively studied, the molecular mechanisms regulating FGF1-induced angiogenesis are poorly understood in vivo. Fumagillin, an antiangiogenic fungal metabolite, has the ability to inhibit FGF-stimulated angiogenesis in the chicken chorioallantoic membrane (CAM). In the current study, chicken CAMs were transfected with a signal peptide-containing version of the FGF1 gene construct (sp-FGF1). Transfected CAMs were then analyzed in the presence and absence of fumagillin treatment with respect to the mRNA expression levels and protein activity of the FGF1 receptor protein (FGFR1), phosphatidylinositol 3-kinase (PI3K), and its immediate downstream target, AKT-1 (protein kinase B). Treatment of sp-FGF1-transfected CAMs with fumagillin showed downregulation for both PI3K and AKT-1 proteins in mRNA expression and protein activity. In contrast, no major alterations in FGFR1 mRNA expression level were observed. Similar patterns of mRNA expression for the above three proteins were observed when the CAMs were treated with recombinant FGF1 protein in place of sp-FGF1 gene transfection. Investigation using biotin-labeled fumagillin showed that only the FGF1 receptor protein containing the cytoplasmic domain demonstrated binding to fumagillin. Furthermore, we demonstrated endothelial-specificity of the proposed antiangiogenic signaling cascade using an in vitro system. Based on these findings, we conclude that the binding of fumagillin to the cytoplasmic domain of the FGF1 receptor inhibited FGF1-stimulated angiogenesis both in vitro and in vivo. J. Cell. Biochem. 101: 1492,1504, 2007. © 2007 Wiley-Liss, Inc. [source]


,-cardiac actin (ACTC) binds to the band 3 (AE1) cardiac isoform

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2003
Paulo Roberto Moura Lima
Abstract The band 3 protein is the major integral protein present in the erythrocyte membrane. Two tissue-specific isoforms are also expressed in kidney alpha intercalated cells and in cardiomyocytes. It has been suggested that the cardiac isoform predominantly mediates the anion exchange in cardiomyocytes, but the role of the cytoplasmic domain of the band 3 (CDB3) protein in the cardiac tissue is unknown. In order to characterize novel associations of the CDB3 in the cardiac tissue, we performed the two-hybrid assay, using a bait comprising the region from leu 258 to leu 311 of the erythrocyte band 3, which must also be present in the cardiac isoform. The assay revealed two clones containing the C-terminal region of the ,-cardiac actin. Immunoprecipitation of whole rat heart using an anti-actin antibody, immunoblotted with anti-human band 3, showed that actin binds to band 3 which was confirmed in the reverse assay. The confocal microscopy showed band 3 in the intercalated discs. Thus, besides the in vivo physical interaction in the Saccharomyces cerevisiae cell, we demonstrated using immunopreciptation that there is a physical association of band 3 with ,-cardiac actin in cardiomyocyte, and we suggest that the binding occur "in situ," in the intercalated disc, a site of cell,cell contact and attachment of the sarcomere to the plasma membrane. © 2003 Wiley-Liss, Inc. [source]


BIT/SHPS-1 Enhances Brain-Derived Neurotrophic Factor-Promoted Neuronal Survival in Cultured Cerebral Cortical Neurons

JOURNAL OF NEUROCHEMISTRY, Issue 4 2000
Toshiyuki Araki
Abstract: Brain-derived neurotrophic factor (BDNF) activates a variety of signaling molecules to exert various functions in the nervous system, including neuronal differentiation, survival, and regulation of synaptic plasticity. Previously, we have suggested that BIT/SHPS-1 (brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1) is a substrate of Shp-2 and is involved in BDNF signaling in cultured cerebral cortical neurons. To elucidate the biological function of BIT/SHPS-1 in cultured cerebral cortical neurons in connection with its role in BDNF signaling, we generated recombinant adenovirus vectors expressing the wild type of rat BIT/SHPS-1 and its 4F mutant in which all tyrosine residues in the cytoplasmic domain of BIT/SHPS-1 were replaced with phenylalanine. Overexpression of wild-type BIT/SHPS-1, but not the 4F mutant, in cultured cerebral cortical neurons induced tyrosine phosphorylation of BIT/SHPS-1 itself and an association of Shp-2 with BIT/SHPS-1 even without addition of BDNF. We found that BDNF-promoted survival of cultured cerebral cortical neurons was enhanced by expression of the wild type and also 4F mutant, indicating that this enhancement by BIT/SHPS-1 does not depend on its tyrosine phosphorylation. BDNF-induced activation of mitogen-activated protein kinase was not altered by the expression of these proteins. In contrast, BDNF-induced activation of Akt was enhanced in neurons expressing wild-type or 4F mutant BIT/SHPS-1. In addition, LY294002, a specific inhibitor of phosphatidylinositol 3-kinase, blocked the enhancement of BDNF-promoted neuronal survival in both neurons expressing wild-type and 4F mutant BIT/SHPS-1. These results indicate that BIT/SHPS-1 contributes to BDNF-promoted survival of cultured cerebral cortical neurons, and that its effect depends on the phosphatidylinositol 3-kinase-Akt pathway. Our results suggest that a novel action of BIT/SHPS-1 does not occur through tyrosine phosphorylation of BIT/SHPS-1 in cultured cerebral cortical neurons. [source]


Expression and identification of a new splice variant of neuroglycan C, a transmembrane chondroitin sulfate proteoglycan, in the human brain

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2006
Sachiko Aono
Abstract Neuroglycan C (NGC) is a transmembrane chondroitin sulfate proteoglycan with an EGF module. We studied the expression of NGC in the human brain, mainly in the hippocampus, and confirmed some observations by conducting experiments using rat brain. In humans, NGC mRNA was expressed exclusively in the brain, especially in the immature brain. The telencephalon, including the hippocampus and neocortex, showed strong mRNA expression. NGC was immunolocalized to neuropils in the hippocampus and neocortex of the adult rat. RT-PCR experiments showed that four splice variants (NGC-I, -II, -III, and -IV) were expressed in the adult human hippocampus. By Western blotting, the expression as proteins of all splice variants except NGC-II was confirmed in the adult rat hippocampus. NGC-IV, which was first found in the present study, had the shortest cytoplasmic domain among the four variants. NGC-IV mRNA was expressed by neurons, but not by astrocytes, in culture prepared from the fetal rat hippocampus, suggesting that NGC-IV plays a role specific to neurons. In addition, the human NGC gene, which is registered as CSPG5, comprised six exons and was approximately 19 kb in size. In exon 2, a single nucleotide polymorphism resulting in Val188Gly in the NGC ectodomain was observed. © 2005 Wiley-Liss, Inc. [source]


The glycoprotein Ib,,von Willebrand factor interaction induces platelet apoptosis

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2 2010
S. LI
Summary.,Background: The interaction of glycoprotein (GP) Ib, with von Willebrand factor (VWF) initiates platelet adhesion, and simultaneously triggers intracellular signaling cascades leading to platelet aggregation and thrombus formation. Some of the signaling events are similar to those occurring during apoptosis, however, it is still unclear whether platelet apoptosis is induced by the GPIb,,VWF interaction. Objectives: To investigate whether the GPIb,,VWF interaction induces platelet apoptosis and the role of 14-3-3, in apoptotic signaling. Methods: Apoptotic events were assessed in platelets or Chinese hamster ovary (CHO) cells expressing wild-type (1b9) or mutant GPIb,IX interacting with VWF by flow cytometry or western blotting. Results: Ristocetin-induced GPIb,,VWF interaction elicited apoptotic events in platelets, including phosphatidylserine exposure, elevations of Bax and Bak, gelsolin cleavage, and depolarization of mitochondrial inner transmembrane potential. Apoptotic events were also elicited in platelets exposed to pathologic shear stresses in the presence of VWF; however, the shear-induced apoptosis was eliminated by the anti-GPIb, antibody AK2. Furthermore, apoptotic events occurred in 1b9 cells stimulated with VWF and ristocetin, but were significantly diminished in two CHO cell lines expressing mutant GPIb,IX with GPIb, truncated at residue 551 or a serine-to-alanine mutation at the 14-3-3,-binding site in GPIb,. Conclusions: This study demonstrates that the GPIb,,VWF interaction induces apoptotic events in platelets, and that the association of 14-3-3, with the cytoplasmic domain of GPIb, is essential for apoptotic signaling. This finding may suggest a novel mechanism for platelet clearance or some thrombocytopenic diseases. [source]


Role of the transmembrane domain of glycoprotein IX in assembly of the glycoprotein Ib,IX complex

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 12 2007
S.-Z. LUO
Summary.,Background:,The glycoprotein (GP) Ib,IX complex is critically involved in platelet adhesion to von Willebrand factor and in the initial step of platelet activation. How this complex is assembled is not clear. We previously showed that the transmembrane (TM) domains of the GPIb, and GPIb, subunits interact and participate in complex assembly. Objectives and methods:,Here, we have investigated the role of the TM and cytoplasmic domains of GPIX in assembly of the GPIb,IX complex, by analyzing the mutational effects on complex expression and assembly in transiently transfected Chinese hamster ovary cells. Results:,Replacing the cytoplasmic domain of GPIX with a poly-alanine sequence had little effect on surface expression and structural integrity of the GPIb,IX complex. In contrast, replacing the GPIX TM domain (residues 132,153) with a poly-leucine-alanine sequence markedly disrupted complex formation of GPIX with GPIb,, interfered with GPIb formation, and decreased surface expression of the host complex. We further analyzed the contributions of a number of GPIX TM residues to complex formation by mutagenesis and found significant roles for Asp135 and several Leu residues. Conclusions:,The TM domain, rather than the cytoplasmic domain, of GPIX plays an important role in expression and assembly of the GPIb,IX complex by interacting with its counterparts of GPIb. These TM domains may form a parallel four-helical bundle structure in the complex. [source]


Platelet integrin ,IIb,3: activation mechanisms

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 7 2007
Y.-Q. MA
Summary., Integrin ,IIb,3 plays a critical role in platelet aggregation, a central response in hemostasis and thrombosis. This function of ,IIb,3 depends upon a transition from a resting to an activated state such that it acquires the capacity to bind soluble ligands. Diverse platelet agonists alter the cytoplasmic domain of ,IIb,3 and initiate a conformational change that traverses the transmembrane region and ultimately triggers rearrangements in the extracellular domain to permit ligand binding. The membrane-proximal regions of ,IIb and ,3 cytoplasmic tails, together with the transmembrane segments of the subunits, contact each other to form a complex which restrains the integrin in the resting state. It is unclasping of this complex that induces integrin activation. This clasping/unclasping process is influenced by multiple cytoplasmic tail binding partners. Among them, talin appears to be a critical trigger of ,IIb,3 activation, but other binding partners, which function as activators or suppressors, are likely to act as co-regulators of integrin activation. [source]


Identification of structural and molecular determinants of the tyrosine-kinase Wzc and implications in capsular polysaccharide export

MOLECULAR MICROBIOLOGY, Issue 5 2010
Emmanuelle Bechet
Summary Capsular polysaccharides are well-established virulence factors of pathogenic bacteria. Their biosynthesis and export are regulated within the transmembrane polysaccharide assembly machinery by the autophosphorylation of atypical tyrosine-kinases, named BY-kinases. However, the accurate functioning of these tyrosine-kinases remains unknown. Here, we report the crystal structure of the non-phosphorylated cytoplasmic domain of the tyrosine-kinase Wzc from Escherichia coli in complex with ADP showing that it forms a ring-shaped octamer. Mutational analysis demonstrates that a conserved EX2RX2R motif involved in subunit interactions is essential for polysaccharide export. We also elucidate the role of a putative internal regulatory tyrosine and we show that BY-kinases from proteobacteria autophosphorylate on their C-terminal tyrosine cluster via a single-step intermolecular mechanism. This structure-function analysis also allows us to demonstrate that two different parts of a conserved basic region called the RK-cluster are essential for polysaccharide export and for kinase activity respectively. Based on these data, we revisit the dichotomy made between BY-kinases from proteobacteria and firmicutes and we propose a unique process of oligomerization and phosphorylation. We also reassess the function of BY-kinases in the capsular polysaccharide assembly machinery. [source]


Izumo is part of a multiprotein family whose members form large complexes on mammalian sperm

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 12 2009
Diego A. Ellerman
Izumo, a sperm membrane protein, is essential for gamete fusion in the mouse. It has an Immunoglobulin (Ig) domain and an N-terminal domain for which neither the functions nor homologous sequences are known. In the present work we identified three novel proteins showing an N-terminal domain with significant homology to the N-terminal domain of Izumo. We named this region "Izumo domain," and the novel proteins "Izumo 2," "Izumo 3," and "Izumo 4," retaining "Izumo 1" for the first described member of the family. Izumo 1,3 are transmembrane proteins expressed specifically in the testis, and Izumo 4 is a soluble protein expressed in the testis and in other tissues. Electrophoresis under mildly denaturing conditions, followed by Western blot analysis, showed that Izumo 1, 3, and 4 formed protein complexes on sperm, Izumo 1 forming several larger complexes and Izumo 3 and 4 forming a single larger complex. Studies using different recombinant Izumo constructs suggested the Izumo domain possesses the ability to form dimers, whereas the transmembrane domain or the cytoplasmic domain or both of Izumo 1 are required for the formation of multimers of higher order. Co-immunoprecipitation studies showed the presence of other sperm proteins associated with Izumo 1, suggesting Izumo 1 forms a multiprotein membrane complex. Our results raise the possibility that Izumo 1 might be involved in organizing or stabilizing a multiprotein complex essential for the function of the membrane fusion machinery. Mol. Reprod. Dev. 76: 1188,1199, 2009. © 2009 Wiley-Liss, Inc. [source]


Study of the mouse sortilin gene: Effects of its transient silencing by RNA interference in TM4 sertoli cells

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004
Jibin Zeng
Abstract Using databases of the mouse genome in combination with a sequence deduced from a mouse sortilin cDNA originated in our laboratory, we found the sortilin gene to map to a region of chromosome 3. The mouse sortilin gene contains 19 short exons separated by introns of various sizes. The study elucidated the exon-intron boundaries. Some introns extend over more than 24 kb. In the cytoplasmic domain of the translation product, we found a dileucine motif and three other motifs known to constitute the active sorting signal of the mannose 6-phosphate receptor (M6P-R). We also tested the hypothesis that sortilin is involved in the sorting of prosaposin (SGP-1) to the lysosomes. Prosaposin was initially identified in Sertoli cells, found in large amounts in the lysosomal compartment and implicated in the degradation of residual bodies released by the spermatids during spermiation. Interestingly, the targeting of prosaposin to the lysosomes is independent of the M6P-R. This investigation demonstrated that sortilin was required for the trafficking of prosaposin to the lysosomes in TM4 cells. The requirement of sortilin was shown using a siRNA probe to block the translation of sortilin mRNA. Sortilin-deficient cells were not able to route prosaposin to the lysosomal compartment but continue to transport cathepsin B, since this hydrolase uses the M6P-R to be routed to the lysosomes. These results indicate that sortilin appears to be involved in the lysosomal trafficking of prosaposin. Mol. Reprod. Dev. 68: 469,475, 2004. © 2004 Wiley-Liss, Inc. [source]


Thermodynamic characterization of two homologous protein complexes: Associations of the semaphorin receptor plexin-B1 RhoGTPase binding domain with Rnd1 and active Rac1

PROTEIN SCIENCE, Issue 5 2009
Prasanta K. Hota
Abstract Plexin receptors function in response to semaphorin guidance cues in a variety of developmental processes involving cell motility. Interactions with Rho, as well as Ras family small GTPases are critical events in the cell signaling mechanism. We have recently determined the structure of a cytoplasmic domain (RBD) of plexin-B1 and mapped its binding interface with several Rho-GTPases, Rac1, Rnd1, and RhoD. All three GTPases associate with a similar region of this plexin domain, but show different functional behavior in cells. To understand whether thermodynamic properties of the GTPase,RBD interaction contribute to such different behavior, we have examined the interaction at different temperatures, buffer, and pH conditions. Although the binding affinity of both Rnd1 and Rac1 with the plexin-B1 RBD is similar, the detailed thermodynamic properties of the interactions are considerably different. These data suggest that on Rac1 binding to the plexin-B1 RBD, the proteins become more rigid in the complex. By contrast, Rnd1 binding is consistent with unchanged or slightly increased flexibility in one or both proteins. Both GTPases show an appreciable reduction in affinity for the dimeric plexin-B1 RBD indicating that GTPase binding is not cooperative with dimer formation, but that a partial steric hindrance destabilizes the dimer. However, a reduced affinity binding mode to a disulphide stabilized model for the dimeric RBD is also possible. Consistent with cellular studies, the interaction thermodynamics imply that further levels of regulation involving additional binding partners and/or regions outside of the RhoGTPase binding domain are required for receptor activation. [source]


Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1

PROTEIN SCIENCE, Issue 3 2002
Che Ma
HIV-1, human immunodeficiency virus type 1; AIDS, acquired immune deficiency syndrome; NMR, nuclear magnetic resonance; CNBr, cyanogen bromide; DHPC, dihexanoyl phosphatidylcholine; TROSY, transverse relaxation-optimized spectroscopy Abstract Vpu is an 81-residue accessory protein of HIV-1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV-1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu-mediated enhancement of the virus release rate from HIV-1-infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu-induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full-length Vpu (residues 2,81). Vpu2,37 encompasses the N-terminal transmembrane ,-helix; Vpu2,51 spans the N-terminal transmembrane helix and the first cytoplasmic ,-helix; Vpu28,81 includes the entire cytoplasmic domain containing the two C-terminal amphipathic ,-helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid-state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid-state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane ,-helix. The C-terminal ,-helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation. [source]


The sequence determinants of cadherin molecules

PROTEIN SCIENCE, Issue 9 2001
Alexander E. Kister
Abstract The sequence and structural analysis of cadherins allow us to find sequence determinants,a few positions in sequences whose residues are characteristic and specific for the structures of a given family. Comparison of the five extracellular domains of classic cadherins showed that they share the same sequence determinants despite only a nonsignificant sequence similarity between the N-terminal domain and other extracellular domains. This allowed us to predict secondary structures and propose three-dimensional structures for these domains that have not been structurally analyzed previously. A new method of assigning a sequence to its proper protein family is suggested: analysis of sequence determinants. The main advantage of this method is that it is not necessary to know all or almost all residues in a sequence as required for other traditional classification tools such as BLAST, FASTA, and HMM. Using the key positions only, that is, residues that serve as the sequence determinants, we found that all members of the classic cadherin family were unequivocally selected from among 80,000 examined proteins. In addition, we proposed a model for the secondary structure of the cytoplasmic domain of cadherins based on the principal relations between sequences and secondary structure multialignments. The patterns of the secondary structure of this domain can serve as the distinguishing characteristics of cadherins. [source]