Home About us Contact | |||
Cytokine Cocktail (cytokine + cocktail)
Selected AbstractsTNF-, suppresses dendritic cell death and the production of reactive oxygen intermediates induced by plasma withdrawalEXPERIMENTAL DERMATOLOGY, Issue 5 2004Hong-Duck Um Abstract:, Mature dendritic cells (DCs) were generated by culturing human peripheral blood monocytes for 7 days and, then, treating them with a cytokine cocktail for 2 days. The viability of the mature DCs (Day 9) obtained was approximately 60,70%, and this gradually declined when they were recultured in X-VIVO 15 media containing 2% human plasma (40% viability after 3 days of reculture). DC death accelerated on withdrawing plasma from the culture (20% viability after 3 days). However, the addition of tumor necrosis factor-, (TNF-,) to the medium completely restored DC viability in the absence of plasma. Such a protective effect was not afforded by other cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1, (IL-1,), IL-4, IL-6 and prostaglandin E2 which are used for the maturation of DCs. These results indicate that TNF-, is specifically required to maintain the viability of mature DCs. The withdrawal of plasma rapidly (within 15 min) elevated cellular levels of reactive oxygen intermediates (ROIs), which have been proposed to regulate the ability of DCs to control inflammatory reactions. The possibility that ROIs act as mediators of DC death was eliminated by the observation that scavengers of ROIs, such as catalase, N -acetylcysteine, glutathione, failed to prolong DC life span in the absence of plasma. Interestingly, TNF-, was found to almost completely abolish the production of ROIs induced by plasma withdrawal. To summarize, our results suggest that TNF-, controls not only the inflammatory functions of DCs but also their survival. [source] Generation of functionally mature dendritic cells from elutriated monocytes using polyinosinic : polycytidylic acid and soluble CD40 ligand for clinical applicationCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 3 2008S. Kim Summary Despite the increasing use of dendritic cell (DC) vaccination in clinical trials, optimal conditions for the generation of functionally mature DCs remain to be established. The current standard DC maturation protocol for clinical trials has been used as an inflammatory cytokine cocktail [tumour necrosis factor (TNF)-,, interleukin (IL)-1,, IL-6 and prostaglandin E2], but this cocktail induced insufficient maturation of DCs derived from elutriated monocytes when cultured in X-VIVO 15. The aim of this study was to define effective combinations of stimulators for generating functionally mature DCs from elutriated monocytes under current good manufacturing practice conditions. We compared the functional capacity of DCs in response to all possible pairwise combinations of four different classes of stimuli: TNF-,, peptidoglycan, polyinosinic : polycytidylic acid [poly(I:C)] and soluble CD40 ligand (CD40L). Maturation status of DCs stimulated with combination of four stimuli was similar to that of the cytokine cocktail as assessed by the cell surface phenotype. However, only the combination of poly(I:C) + CD40L induced complete functional activation of the whole DC population, assessing IL-12p70 production, allostimulatory activity, migratory response to CCL19 and T helper 1-polarizing capacity. Thus, the protocol based on the combination of poly(I:C) and CD40L is more effective for the induction of clinical-grade DCs from elutriated monocytes than the standard cytokine cocktail. [source] Expansion of hematopoietic stem/progenitor cellsAMERICAN JOURNAL OF HEMATOLOGY, Issue 12 2008Wu Hai-Jiang Hematopoietic stem/progenitor cells (HSPCs) transplantation is hampered by the low number of stem cells per sample. To tackle this obstacle, several protocols for expansion of HSPCs in vitro are currently in development, such as the use of cytokine cocktails, coculture with mesenchymal stem cells as feeder cells, and cell culture in bioreactors. With the progress in the understanding of the molecular and cellular mechanisms regulating HSPCs maintenance and expansion, more recent approaches have involved transcription regulation, cell cycle regulation, telomerase regulation, and chromatin-modifying agents. The potential clinical application and safety issues relevant to the expanded HSPCs are also discussed in this review. Am. J. Hematol., 2008. © 2008 Wiley-Liss, Inc. [source] In vitro generation of human CD86+ dendritic cells from CD34+ haematopoietic progenitors by PMA and in serum-free mediumCLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2001G. Ramadan The cytokine requirements to differentiate CD34+ progenitor cells from different origins either cord blood (CB) or peripheral blood (PB) into dendritic cells (DC) are known to be different. In addition to DC, macrophages and neutrophils are generated. On the other hand, phorbol esters such as PMA induce primary human CD34+ bone marrow (BM) progenitor cells to differentiate into functional DC and no other lineages are generated. In addition, FCS is used as culture supplement in most of the protocols described which contains additional foreign antigens potentially skewing the resulting immune response. Therefore, we evaluated the ability to differentiate CB- and PB-CD34+ progenitor cells into DC with PMA and under serum-free conditions. In this study, we delineate the maturation of cultured human blood DC by analysis of expression co-stimulatory molecule B7,2 (CD86). Human mature DC with typical morphology and surface antigen phenotype (CD1a,, CD83+ and CD86+) were obtained from CB- and PB-CD34+ progenitor cells after 1 week of culture in serum-free medium upon stimulation with PMA alone. The same result was obtained from ex vivo -expanded BM-CD34+ cells. CD86+ yield was increased by PMA compared to cytokine cocktails (28·0% ± 7·0 versus 15·3% ± 5·6 for CB and 44·6% ± 7·5 versus 28·1% ± 7·5 for PB, respectively). CD86 was most up-regulated in the presence of the calcium ionophore ionomycin. However, the number of viable cells after differentiation was decreased by PMA plus ionomycin (P < 0·05) or plus TNF-alpha (P > 0·05) as compared with that in PMA alone. We conclude that PMA is a potent activator to differentiate human CD34+ cells into mature DC in serum-free medium. This may be used for in vitro studies of primed or genetically modified DC against infectious and tumour-associated antigens. [source] |