Cytochalasin D (cytochalasin + d)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Single mechano-gated channels activated by mechanical deformation of acutely isolated cardiac fibroblasts from rats

ACTA PHYSIOLOGICA, Issue 3 2010
A. Kamkin
Abstract Aim:, Mechanosensitive conductances were reported in cardiac fibroblasts, but the properties of single channels mediating their mechanosensitivity remain uncharacterized. The aim of this work was to investigate single mechano-gated channels (MGCs) activated by mechanical deformations of cardiac fibroblasts. Methods:, Currents through single MGCs and mechanosensitive whole-cell currents were recorded from isolated rat atrial fibroblasts using the cell-attached and whole-cell patch-clamp configurations respectively. Defined mechanical stress was applied via the patch pipette used for the whole-cell recordings. Results:, Under resting conditions occasional short openings of two types of single MGCs with conductances of 43 and 87 pS were observed. Both types of channels displayed a linear current,voltage relationship with the reversal potential around 0 mV. Small (1 ,m) mechanical deformations affected neither single nor whole-cell mechano-gated currents. Cell compressions (2, 3 and 4 ,m) augmented the whole-cell currents and increased the frequency and duration of single channel openings. Cell stretches (2, 3 and 4 ,m) inactivated the whole-cell currents and abolished the activity of single MGCs. Gd3+ (8 ,m) blocked the whole-cell currents within 5 min. No single channel activity was observed in the cell-attached mode when Gd3+ was added to the intrapipette solution. Cytochalasin D and colchicine (100 ,m each) completely blocked both the whole-cell and single channel currents. Conclusions:, These findings show that rat atrial fibroblasts express two types of MGCs whose activity is governed by cell deformation. We conclude that fibroblasts can sense the direction of applied stress and contribute to mechano-electrical coupling in the heart. [source]


Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-, signalling in endochondral bone growth

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
Anita Woods
Abstract Elucidating the signalling pathways that regulate chondrocyte differentiation, such as the actin cytoskeleton and Rho GTPases, during development is essential for understanding of pathological conditions of cartilage, such as chondrodysplasias and osteoarthritis. Manipulation of actin dynamics in tibia organ cultures isolated from E15.5 mice results in pronounced enhancement of endochondral bone growth and specific changes in growth plate architecture. Global changes in gene expression were examined of primary chondrocytes isolated from embryonic tibia, treated with the compounds cytochalasin D, jasplakinolide (actin modifiers) and the ROCK inhibitor Y27632. Cytochalasin D elicited the most pronounced response and induced many features of hypertrophic chondrocyte differentiation. Bioinformatics analyses of microarray data and expression validation by real-time PCR and immunohistochemistry resulted in the identification of the nuclear receptor retinoid related orphan receptor-, (Ror-,) as a novel putative regulator of chondrocyte hypertrophy. Expression of Ror-, target genes, (Lpl, fatty acid binding protein 4 [Fabp4], Cd36 and kruppel-like factor 5 [Klf15]) were induced during chondrocyte hypertrophy and by cytochalasin D and are cholesterol dependent. Stimulation of Ror-, by cholesterol results in increased bone growth and enlarged, rounded cells, a phenotype similar to chondrocyte hypertrophy and to the changes induced by cytochalasin D, while inhibition of cholesterol synthesis by lovastatin inhibits cytochalasin D induced bone growth. Additionally, we show that in a mouse model of cartilage specific (Col2-Cre) Rac1, inactivation results in increased Hif-1, (a regulator of Rora gene expression) and Ror-,+ cells within hypertrophic growth plates. We provide evidence that cholesterol signalling through increased Ror-, expression stimulates chondrocyte hypertrophy and partially mediates responses of cartilage to actin dynamics. [source]


Mitochondrial displacements in response to nanomechanical forces

JOURNAL OF MOLECULAR RECOGNITION, Issue 1 2008
Yaron R. Silberberg
Abstract Mechanical stress affects and regulates many aspects of the cell, including morphology, growth, differentiation, gene expression and apoptosis. In this study we show how mechanical stress perturbs the intracellular structures of the cell and induces mechanical responses. In order to correlate mechanical perturbations to cellular responses, we used a combined fluorescence-atomic force microscope (AFM) to produce well defined nanomechanical perturbations of 10,nN while simultaneously tracking the real-time motion of fluorescently labelled mitochondria in live cells. The spatial displacement of the organelles in response to applied loads demonstrates the highly dynamic mechanical response of mitochondria in fibroblast cells. The average displacement of all mitochondrial structures analysed showed an increase of ,40%, post-perturbation (,160,nm in comparison to basal displacements of ,110,nm). These results show that local forces can produce organelle displacements at locations far from the initial point of contact (up to ,40,µm). In order to examine the role of the cytoskeleton in force transmission and its effect on mitochondrial displacements, both the actin and microtubule cytoskeleton were disrupted using Cytochalasin D and Nocodazole, respectively. Our results show that there is no significant change in mitochondrial displacement following indentation after such treatments. These results demonstrate the role of the cytoskeleton in force transmission through the cell and on mitochondrial displacements. In addition, it is suggested that care must be taken when performing mechanical experiments on living cells with the AFM, as these local mechanical perturbations may have significant structural and even biochemical effects on the cell. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Functional importance of the actin cytoskeleton in contraction of bovine iris sphincter muscle

AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 3 2002
J. A. C. Filipe
Summary 1 The contractile capacity of smooth muscle cells depends on the cytoskeletal framework of the cell. The aim of this study was to determine the functional importance of both the actin and the tubulin components of the cytoskeleton in contractile responses of the bovine isolated iris sphincter muscle. 2 In each preparation, two contractions to the muscarinic agonist carbachol were obtained. The maximum responses of the first contractions were taken as 100%. The second contractions to carbachol were elicited in the presence of either cytochalasin B (50 and 5 ,m), an inhibitor of the actin cytoskeleton, or colchicine (100 ,m), an inhibitor of the tubulin cytoskeleton (30 min incubation). 3 Cytochalasin B, at a concentration of 50 ,m, significantly decreased the contractions induced by carbachol, with the maximum response reduced to 21.8 ± 6.6% (n = 12) of the initial maximum. The maximal contractions to carbachol in the presence of colchicine reached 96.2 ± 7.9% (n = 9) of the initial contraction, which was not significantly different from control second responses to carbachol with neither drug present, which reached 113.3 ± 7.6% (n = 7). 4 The effect of cytochalasin B was dose-dependent, since at a lower concentration of 5 ,m, the drug decreased the maximum contraction to carbachol to 60.3 ± 8.8% (n = 6). The effect of cytochalasin B was at least partially reversible, since after the use of the higher concentration of 50 ,m, contractions to carbachol increased to 62.3 ± 15.5% (n = 4) of the maximal response, after 1 h repeated washing of the preparations. 5 Cytochalasin D, at a concentration of 50 ,m, completely abolished the contractions induced by carbachol (n = 4). 6 These findings suggest that in bovine iris sphincter muscle, contractions to carbachol are highly dependent, from a functional point of view, on actin polymerization, and not, to any important degree, on the polymerization of tubulin. [source]


Compaction of cell shape occurs before decrease of elasticity in CHO-K1 cells treated with actin cytoskeleton disrupting drug cytochalasin D

CYTOSKELETON, Issue 4 2009
Christian Schulze
Abstract The actin filaments of the cytoskeleton form a highly dynamic polymer scaffold which is actively involved in many essential mechanisms such as cell migration, transport, mitosis, and mechanosensitivity. We treated CHO-K1 cells with different concentrations of the actin cytoskeleton disrupting drug cytochalasin D. Then investigating the cells' elastic behaviour by scanning force microscopy-based rheology we confirmed for high cytochalasin D concentrations (,1.5 ,M) a significant decrease of mechanical stability. At lower concentrations we measured no significant softening, but flattening and a horizontal contraction was observable even at low concentrations (,0.3 ,M) of cytochalasin D. The observed changes in cell shape resulted in a lower cell volume, showing that there is compensation by volume for small decreases in cytoskeletal strength resulting from reduced numbers or lengths of actin filaments. These results suggest that the characteristic functions defining a cell's mechanical stability such as mechanosensitivity can be maintained via small changes in cell volume in order to counter fluctuations in cytoskeletal composition. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


An actin-stabilizing peptide conjugate deduced from the major outer sheath protein of the bacterium Treponema denticola

CYTOSKELETON, Issue 9 2007
Mohsen Amin
Abstract A synthetic peptide conjugated to bovine serum albumin, P34BSA, based on a 10-mer in the deduced amino acid sequence of the major outer sheath protein of Treponema denticola, was found to stabilize actin filaments of fibroblasts. Pretreatment of cells with P34BSA inhibited the actin disruption induced by cytochalasin D and latrunculin B. P34BSA was taken up by the cells and localized among actin filaments. P34BSA bound actin from fibroblast lysates, and cell exposure to P34BSA led to the activation of RhoA, a key regulator of actin filament assembly in fibroblasts. Exposure of fibroblasts to P34BSA retarded their migration on a collagen substratum. P34BSA also inhibited chemotaxis of murine neutrophils. Our findings with a novel peptide conjugate imply that bacterial proteins known to perturb the cytoskeleton represent a rich source of molecular models upon which to design synthetic reagents for modulating actin-dependent cellular functions. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source]


Expression of WASP and Scar1/WAVE1 actin-associated proteins is differentially modulated during differentiation of HL-60 cells

CYTOSKELETON, Issue 4 2003
Sophie Launay
Abstract The Wiskott-Aldrich Syndrome (WAS) is a disease associated with mutations in the WAS gene and characterised by developmental defects in haematopoietic cells such as myeloid cells. The Wiskott-Aldrich Syndrome protein (WASP)-family includes Scar1 and WASP, which are key regulators of actin reorganization in motile cells. To understand the roles of Scar1 and WASP in myeloid cells and their cytoskeletal control in haematopoietic tissues, we have explored their expression during differentiation of the promyeloid cell line HL-60. Undifferentiated HL-60 cells expressed Scar1 and WASP, and differentiation to neutrophils, induced by retinoic acid or non-retinoid agent treatments, led to a decrease in the level of expression of Scar1, whereas WASP expression was unaffected. Differentiation to monocytes/macrophages, induced by phorbol ester treatment, resulted in a decreased expression of both proteins in the adherent mature cells. Vitamin D3 treatment or cytochalasin D in combination with PMA treatment did not affect WASP expression suggesting that adhesion and cytoskeletal integrity were both essential to regulate WASP expression. Scar1 expression was regulated by differentiation, adhesion, and cytoskeletal integrity. Recently, WASP was found to colocalize with actin in the podosomes. In contrast, we show here that Scar1 did not localize with the podosomes in mature monocytes/macrophages. These observations show for the first time that modulation of Scar1 and WASP expression is a component of the differentiation program of myeloid precursors and indicate that WASP and Scar1 have different roles in mature myeloid cells. Cell Motil. Cytoskeleton 54:274,285, 2003. © 2003 Wiley-Liss, Inc. [source]


Mass Fabrication of Small Cell Spheroids by Using Micro-patterned Tissue Culture Plate,

ADVANCED ENGINEERING MATERIALS, Issue 10 2009
Akinari Iwasaki
A newly designed micro-patterned chamber was utilized to fabricate cell spheroids with a constant size (<200,,m) and cell number. By applying cytochalasin D as a chemical to control cell adhesion and aggregation, thousands of aggregated cells were formed in each patterned chamber. Importantly, the formed cell spheroids were collected by a simple pipetting process without using proteinase. [source]


Vacuolar membrane dynamics revealed by GFP-AtVam3 fusion protein

GENES TO CELLS, Issue 7 2002
Tomohiro Uemura
Background: The plant vacuole is a multifunctional organelle that has various physiological functions. The vacuole dynamically changes its function and shape, dependent on developmental and physiological conditions. Our current understanding of the dynamic processes of vacuolar morphogenesis has suffered from the lack of a marker for observing these processes in living cells. Results: We have developed transgenic Arabidopsis thaliana expressing a vacuolar syntaxin-related molecule (AtVam3/SYP22) fused with green fluorescent protein (GFP). Observations using confocal laser scanning microscopy demonstrated that the plant vacuole contained a dynamic membrane system that underwent a complex architectural remodelling. Three-dimensional reconstitution and time-lapse analysis of GFP-fluorescence images revealed that cylindrical and sheet-like structures were present in the vacuolar lumen and were moving dynamically. The movement, but not the structure itself, was abolished by cytochalasin D, an inhibitor of actin polymerization. This moving structure, which sometimes penetrated through the vacuolar lumen, possessed a dynamic membrane architecture similar to the previously recognized ,transvacuolar strand.' Conclusion: We propose two possible models for the formation of the vacuolar lumenal structure. Membrane structures including protruding tubules and reticular networks have recently been recognized in many other organelles, and may be actively involved in intra- and/or inter-organelle signalling. [source]


Effect of Action Potential Duration and Conduction Velocity Restitution and Their Spatial Dispersion on Alternans and the Stability of Arrhythmias

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 11 2002
ISABELLE BANVILLE Ph.D.
Restitution and Spatial Heterogeneities vs Arrhythmias.Introduction: The slope of the action potential duration (APD) restitution curve has been used to explain wavebreaks during arrhythmia initiation and maintenance. This hypothesis remains incomplete to fully describe the experimental data. Other factors contributing to wavebreaks must be studied to further understand arrhythmia dynamics. Methods and Results: Control APDs were measured from isolated rabbit hearts using a monophasic action potential probe. APD and conduction velocity (CV) restitution were quantified over the heart surface for two drugs, diacetyl monoxime (DAM) and cytochalasin D (CytoD), using a dual camera video imaging system. For all pacing intervals: (1) control APDs were shorter than for CytoD but longer than for DAM; and (2) CV was greater for CytoD compared with DAM. APD dispersion increased as pacing interval decreased for both drugs. For DAM, increased dispersion was due to a difference in APD restitution between the right and left ventricle. For CytoD, increased dispersion was due to discordant alternans, with no significant spatial variation in restitution. Fibrillation was sustained only in the control hearts; with DAM, stable reentry was sustained with shorter APD and cycle length compared with CytoD for which only nonsustained unstable reentry occurred. Conclusion: Alternans and arrhythmia dynamics are affected by the spatial dispersion of APD restitution as well as CV restitution, not simply the slope of APD restitution. Therefore, a direct link of the APD restitution slope to alternans and arrhythmia dynamics in rabbit heart does not exist. Designing antiarrhythmic drugs to alter only the restitution slope may not be appropriate. [source]


Control of chondrocyte gene expression by actin dynamics: a novel role of cholesterol/Ror-, signalling in endochondral bone growth

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
Anita Woods
Abstract Elucidating the signalling pathways that regulate chondrocyte differentiation, such as the actin cytoskeleton and Rho GTPases, during development is essential for understanding of pathological conditions of cartilage, such as chondrodysplasias and osteoarthritis. Manipulation of actin dynamics in tibia organ cultures isolated from E15.5 mice results in pronounced enhancement of endochondral bone growth and specific changes in growth plate architecture. Global changes in gene expression were examined of primary chondrocytes isolated from embryonic tibia, treated with the compounds cytochalasin D, jasplakinolide (actin modifiers) and the ROCK inhibitor Y27632. Cytochalasin D elicited the most pronounced response and induced many features of hypertrophic chondrocyte differentiation. Bioinformatics analyses of microarray data and expression validation by real-time PCR and immunohistochemistry resulted in the identification of the nuclear receptor retinoid related orphan receptor-, (Ror-,) as a novel putative regulator of chondrocyte hypertrophy. Expression of Ror-, target genes, (Lpl, fatty acid binding protein 4 [Fabp4], Cd36 and kruppel-like factor 5 [Klf15]) were induced during chondrocyte hypertrophy and by cytochalasin D and are cholesterol dependent. Stimulation of Ror-, by cholesterol results in increased bone growth and enlarged, rounded cells, a phenotype similar to chondrocyte hypertrophy and to the changes induced by cytochalasin D, while inhibition of cholesterol synthesis by lovastatin inhibits cytochalasin D induced bone growth. Additionally, we show that in a mouse model of cartilage specific (Col2-Cre) Rac1, inactivation results in increased Hif-1, (a regulator of Rora gene expression) and Ror-,+ cells within hypertrophic growth plates. We provide evidence that cholesterol signalling through increased Ror-, expression stimulates chondrocyte hypertrophy and partially mediates responses of cartilage to actin dynamics. [source]


Non-muscle myosin IIB helps mediate TNF cell death signaling independent of actomyosin contractility (AMC)

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2010
Patrick G. Flynn
Abstract Non-muscle myosin II (NM II) helps mediate survival and apoptosis in response to TNF-alpha (TNF), however, NM II's mechanism of action in these processes is not fully understood. NM II isoforms are involved in a variety of cellular processes and differences in their enzyme kinetics, localization, and activation allow NM II isoforms to have distinct functions within the same cell. The present study focused on isoform specific functions of NM IIA and IIB in mediating TNF induced apoptosis. Results show that siRNA knockdown of NM IIB, but not NM IIA, impaired caspase cleavage and nuclear condensation in response to TNF. NM II's function in promoting cell death signaling appears to be independent of actomyosin contractility (AMC) since treatment of cells with blebbistatin or cytochalasin D failed to inhibit TNF induced caspase cleavage. Immunoprecipitation studies revealed associations of NM IIB with clathrin, FADD, and caspase 8 in response to TNF suggesting a role for NM IIB in TNFR1 endocytosis and the formation of the death inducing signaling complex (DISC). These findings suggest that NM IIB promotes TNF cell death signaling in a manner independent of its force generating property. J. Cell. Biochem. 9999: 1365,1375, 2010. © 2010 Wiley-Liss, Inc. [source]


Ndrg4 enhances NGF-induced ERK activation uncoupled with Elk-1 activation

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2006
Shigeki Hongo
Abstract Ndrg4 is expressed predominantly in the early postnatal rat brain and may be related to neural cell differentiation. PC12 cell lines stably expressing increased levels of Ndrg4 protein display enhanced NGF-induced phosphorylation of MEK and ERK. In contrast, the Ndrg4-C2-overexpressed PC12 cell lines showed attenuated NGF-promoted phosphorylation of Elk-1, which is a nuclear target of ERK. A reporter assay also indicated that Ndrg4-C2 suppresses Elk-1-mediated transcriptional activation and SRE reporter expression. The suppressive effect of Ndrg4-C2 on NGF-induced activation of Elk-1 was abolished by colchicine but not by cytochalasin D, suggesting that microtubules are involved in the reduced activation of Elk-1 by Ndrg4. Ndrg4 may play a role in supporting the activation of ERK and its target proteins needed for neuronal differentiation and in reducing the activation of Elk-1 implicated in cell growth. J. Cell. Biochem. 98: 185,193, 2006. © 2006 Wiley-Liss, Inc. [source]


Differential regulation of P-glycoprotein genes in primary rat hepatocytes by collagen sandwich and drugs

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2002
Chow H. Lee
Abstract P-glycoprotein (Pgp) is a small family of plasma membrane proteins, which are capable of transporting substrates across cell membranes. Class I and II Pgp are able to transport drugs and have been shown to mediate multidrug resistance (MDR). Class III Pgp is a long chain phospholipid transporter and does not mediate MDR. The regulation of all three Pgp genes is still poorly understood. For instance, it is not clear if the three Pgp genes are co-regulated or differentially regulated by external stimuli. This study examined the effect of drugs and collagen sandwich system on expression and transcription of all the three Pgp genes in primary rat hepatocytes. Consistent with previous findings, dramatic overexpression (25-fold) of Class II Pgp mRNA was seen, upon culturing of hepatocytes onto a single layered collagen gel. Hepatocytes sandwiched between two layers of collagen gel exhibited decreased (4.5-fold) Class II Pgp mRNA expression as compared to the single layer system. Treatment of hepatocytes cultured on the single layer collagen system with cytoskeletal disrupting (cytochalasin D, colchicine) but not cytoskeletal stabilizing (phalloidin, taxol) drugs, suppressed Class II Pgp expression. In all cases, no change in Class II Pgp transcription was observed as demonstrated by nuclear run-on studies. This suggests that collagen configuration and drugs affect Class II Pgp mRNA expression predominantly through post-transcriptional mechanisms. In contrast, parallel increases in mRNA expression and transcription of Class I Pgp gene were observed upon culturing of hepatocytes, in the collagen sandwich system, and treatment with some drugs (cytochalasin D, colchicine, and phalloidin). This suggests that Class I Pgp gene is regulated primarily via transcriptional mechanisms by these stimuli. On the other hand, Class III Pgp gene appears to be post-transcriptionally co-regulated with Class II Pgp gene by treatment with the drugs, while collagen configuration affected both transcription and post-transcription of Class III Pgp gene. Finally, dose-dependent studies using cycloheximide provided further evidence that the two MDR-associated genes are not co-regulated. This study has implications for future studies on the molecular mechanisms of Pgp gene regulation. J. Cell. Biochem. 86: 12,20, 2002. © 2002 Wiley-Liss, Inc. [source]


Quantitative analysis of agonist-dependent parathyroid hormone receptor trafficking in whole cells using a functional green fluorescent protein conjugate

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2001
Bruce R. Conway
Many G-protein coupled receptors (GPCRs) undergo ligand-dependent internalization upon activation. The parathyroid hormone (PTH) receptor undergoes endocytosis following prolonged exposure to ligand although the ultimate fate of the receptor following internalization is largely unknown. To investigate compartmentalization of the PTH receptor, we have established a stable cell line expressing a PTH receptor,green fluorescent protein (PTHR,GFP) conjugate and an algorithm to quantify PTH receptor internalization. HEK 293 cells expressing the PTHR,GFP were compared with cells expressing the wild-type PTH receptor in whole-cell binding and functional assays. 125I-PTH binding studies revealed similar Bmax and kD values in cells expressing either the PTHR,GFP or the wild-type PTH receptor. PTH-induced cAMP accumulation was similar in both cell lines suggesting that addition of the GFP to the cytoplasmic tail of the PTH receptor does not alter the ligand binding or G-protein coupling properties of the receptor. Using confocal fluorescence microscopy, we demonstrated that PTH treatment of cells expressing the PTHR,GFP conjugate produced a time-dependent redistribution of the receptor to the endosomal compartment which was blocked by pretreatment with PTH antagonist peptides. Treatment with hypertonic sucrose prevented PTH-induced receptor internalization, suggesting that the PTH receptor internalizes via a clathrin-dependent mechanism. Moreover, co-localization with internalized transferrin showed that PTHR,GFP trafficking utilized the endocytic recycling compartment. Experiments using cycloheximide to inhibit protein synthesis demonstrated that recycling of the PTHR,GFP back to the plasma membrane was complete within 1,2 h of ligand removal and was partially blocked by pretreatment with cytochalasin D, but not nocodazole. We also demonstrated that the PTH receptor, upon recycling to the plasma membrane, is capable of undergoing a second round of internalization, a finding consistent with a role for receptor recycling in functional resensitization. © 2001 Wiley-Liss, Inc. [source]


DOES THE CYTOSKELETON OF INTESTINAL EPITHHELIAL CELLS FUNCTION AS A CELLULAR ALARM TO IDENTIFY THE E. COLI INFECTION

JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 2001
Zhe Li
Intestinal epithelial cells play an important role in regulating host immunity in response to intestinal infection. Pathogenic bacteria (EPEC and EHEC) cause profound cytoskeletal rearrangement in intestinal epithelial cells during attachment or invasion. Rearrangement of cytoskeletal proteins could be a signal to up-regulate host defence response. Aims, To determine the role of actin cytoskeleton and microtubles in IL-8 mRNA response to E. coli infection. Methods, T84 cell monolayers in 6-well plates were infected with HB101, EPEC and EHEC (105 CFU/well) and compared with uninfected control at 3, 6 and 12 h post infection. Control and infected monolayers were treated with nocodazole (Noc, microtubule disrupter, 30 mm), taxol (Tax, microtubule stabiliser, 10 mm), cytochalasin D (CytoD, actin depolymeriser, 100 nm) and Jasplakinolide (Jasp, actin polymeriser, stabilise actin filaments, 1 mm) and studied 6 h post infection. IL-8 gene expression was measured by semiquantitative RT,PCR in control and uninfected monolayers with and without drug treatment and IL8 protein secretion by ELISA. The morphology of F-actin and ,-tubulin was examined by FITC-phaloidin staining (FAS), immunohistochemistry and confocal microscopy. Results, IL-8 mRNA and IL-8 were increased by infection with all bacterial strains at 3 and 6 h but both IL-8 mRNA and IL-8 in EHEC and EPEC infection were decreased compared with control and HB101 at 12 h. Disruption of microfilaments by Noc increased IL-8 (2.7 fold) while preservation of microfilaments by Tax inhibited IL8 response (0.5 fold) to HB101 infection only. CytoD decreased (0.1,0.5 fold) IL8 expression at all time points in all infections while stabilising actin by Jasp markedly increased the IL8 response (2,6 fold) in control, HB101, EHEC and EPEC at 3 and 6 h. CytoD inhibited Noc-induced IL8 gene expression. Confocal microscopy demonstrated that CytoD and Noc caused major morphological damage to the actin and ,-tubulin by 6 h. Similar changes were also observed in EPEC and EHEC infection at 12 h but not HB101. Jasp preserved actin stress filaments in both EPEC and EHEC. Conclusions, Disruption of microtubules and exogenous rearrangement of actin by pathogenic organism may be primary stimuli to up-regulate proinflammatory cytokine gene expression. Preservation of actin filaments is required for this response and may be necessary for signal transduction to the nucleus. [source]


Regulated interactions of the norepineprhine transporter by the actin and microtubule cytoskeletons

JOURNAL OF NEUROCHEMISTRY, Issue 5 2008
Alexis M. Jeannotte
Abstract One role of the actin cytoskeleton is to maintain the structural morphology and activity of the pre-synaptic terminal. We sought to determine if the actin cytoskeleton plays a role in regulating interactions between the norepinephrine transporter (NET) and alpha-Synuclein (,-Syn), two proteins expressed in the pre-synaptic terminal. In cells transfected with either 0.5 ,g/mL or 3 ,g/mL of ,-Syn and 1 ,g/mL of NET DNA, treatment with cytochalasin D, an actin depolymerizing agent, caused a dose-dependent decrease and increase, respectively, in [3H]-NE uptake. Protein interactions between NET, ,-actin, and ,-Syn were modified, along with levels of surface transporters. Treatment of primary brainstem neurons and frontal cortex synaptosomes with cytochalasin D caused a 115% and 28% increase, respectively, in NET activity. Depolymerization of both actin and microtubules did not alter NET activity in cells with 0.5 ,g/mL ,-Syn, but caused an increase in [3H]-NE uptake in cells transfected with 3 ,g/mL of ,-Syn and primary neurons. This is the first direct demonstration of NET activity being regulated via actin and modulated by interactions with ,-Syn. [source]


Dependence of axon initial segment formation on Na+ channel expression

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2005
Xiaorong Xu
Abstract Spinal motor neurons were isolated from embryonic rats, and grown in culture. By 2 days in vitro, the axon initial segment was characterized by colocalization and clustering of Na+ channels and ankyrinG. By 5 days, NrCAM, and neurofascin could also be detected at most initial segments. We sought to determine, as one important aim, whether Na+ channels themselves played an essential role in establishing this specialized axonal region. Small hairpin RNAs (shRNAs) were used to target multiple subtypes of Na+ channels for reduced expression by RNA interference. Transfection resulted in substantial knockdown of these channels within the cell body and also as clusters at initial segments. Furthermore, Na+ currents originating at the initial segment, and recorded under patch clamp, were strongly reduced by shRNA. Control shRNA against a nonmammalian protein was without effect. Most interestingly, targeting Na+ channels also blocked clustering of ankyrinG, NrCAM, and neurofascin at the initial segment, although these proteins were seen in the soma. Thus, both Na+ channels and ankyrinG are required for formation of this essential axonal domain. Knockdown of Na+ channels was somewhat less effective when introduced after the initial segments had formed. Disruption of actin polymerization by cytochalasin D resulted in multiple initial segments, each with clusters of both Na+ channels and ankyrinG. The results indicate that initial segment formation occurs as Na+ channels are transported into the nascent axon membrane, diffuse distally, and link to the cytoskeleton by ankyrinG. Subsequently, other components are added, and stability is increased. A computational model closely reproduced the experimental results. © 2005 Wiley-Liss, Inc. [source]


Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 2 2004
Steven P. Arnoczky
Abstract To determine the effect of various degrees of ex vivo static tensile loading on the expression of collagenase (MMP-1) in tendon cells, rat tail tendons were statically loaded in tension at 0.16, 0.77, 1.38 or 2.6 MPa for 24 h. Northern blot analysis was used to assay for mRNA expression of MMP-1 in freshly harvested, 24 h load deprived, and 24 h statically loaded tendons. Western blot analysis was used to assay for pro-MMP-1 and MMP-1 protein expression in fresh and 24 h load deprived tendons. Freshly harvested rat tail tendons demonstrated no evidence of MMP-1 mRNA expression and no evidence of the pro-MMP-1 or MMP-1 protein. Ex vivo load deprivation for 24 h resulted in a marked increase in the mRNA expression of MMP-1 which coincided with a marked increase of both pro-MMP-1 and MMP-1 protein expression. When tendons were subjected to ex vivo static tensile loading during the 24 h culture period, a significant inhibition of this upregulation of MMP-1 mRNA expression was found with increasing ioad (p < 0.05). A strong (r2 = 0.78) and significant (p < 0.001) inverse correlation existed between the level of static tensile load and the expression of MMP-1. Disruption of the actin cytoskeleton with cytochalasin D abolished the inhibitory effect of ex vivo static tensile loading on MMP-1 expression. The results of this study suggest that up-regulation of MMP-1 expression in tendon cells ex vivo can be inhibited by static tensile loading, presumably through a cytoskeletally based mechanotransduction pathway. © 2003 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]


Different effects of abciximab and cytochalasin D on clot strength in thrombelastography

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 1 2004
T. Lang
Summary., Maximum amplitude (MA) in thrombelastography (TEG) consists of a plasmatic and a platelet component. To assess the magnitude of the plasmatic component, pharmacological approaches have been proposed to eliminate the platelet component. We evaluated the individual and combined effects of abciximab and cytochalasin D on the MA of TEG. Whole blood, platelet-rich plasma (PRP) and homologous platelet-poor plasma (PPP) from 20 healthy volunteers were spiked with abciximab or cytochalasin D or a combination of both and TEGs performed. Abciximab and cytochalasin D decreased MA in all samples. MA of whole blood (18.6 ± 3.1 mm) and PRP (33.7 ± 3.5 mm) spiked with abciximab or cytochalasin D alone (15.0 ± 2.9 mm and 25.0 ± 4.0 mm) were significantly higher when compared with abciximab and cytochalasin D combined (10.4 ± 3.0 and 20.2 ± 3.5 mm). While MA of PRP and homologous PPP were significantly (P < 0.001) different after individual administration of abciximab and cytochalasin D, combination of both abolished this difference (20.2 ± 3.5 mm and 20.4 ± 3.7 mm, P = 0.372). In whole blood of critically ill patients or patients undergoing major surgery there was also a significant difference of MA between abciximab alone and in combination with cytochalasin D (16.5 ± 11.3 mm and 11.3 ± 7.7 mm, P < 0.001). This indicates that in contrast to individual administration of abciximab or cytochalasin D, a combination of both compounds eliminates the platelet-specific effect on MA of TEG tracings. [source]


On-line confocal imaging of the events leading to structural dedifferentiation of an axonal segment into a growth cone after axotomy

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 5 2006
Iman Sahly
Abstract The transformation of a transected axonal tip into a growth cone (GC) after axotomy is a critical step in the cascade of events leading to regeneration. However, the mechanisms underlying it are largely unknown. In earlier studies we reported that axotomy of cultured Aplysia neurons leads to a transient and local increase in the free intracellular Ca2+ concentration, calpain activation, and localized proteolysis of the submembranal spectrin. In a recent ultrastructural study, we reported that calpain activation is critical for the restructuring of the microtubules and neurofilaments at the cut axonal end to form a compartment in which vesicles accumulate. By using on-line confocal imaging of microtubules (MTs), actin, and vesicles in cultured Aplysia neurons, we studied the kinetics of the transformation and examined some of the mechanisms that orchestrate it. We report that perturbation of the MTs' polymerization by nocodazole inhibits the formation of an MT-based compartment in which the vesicles accumulate, yet actin repolymerization proceeds normally to form a nascent GC's lamellipodium. Nevertheless, under these conditions, the lamellipodium fails to expand and form neurites. When actin filament polymerization is inhibited by cytochalasin D or jasplakinolide, the MT-based compartment is formed and vesicles accumulate at the cut axonal end. However, a GC's lamellipodium is not formed, and the cut axonal end fails to regenerate. A growth-competent GC is formed only when MT restructuring, the accumulation of vesicles, and actin polymerization properly converge in time and space. J. Comp. Neurol. 494:705,720, 2006. © 2005 Wiley-Liss, Inc. [source]


Actin-Based Motility in the Net Slime Mould Labyrinthula: Evidence for the Role of Myosin in Gliding Movement

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 6 2005
TERENCE M. PRESTON
Abstract. In contrast to crawling movement (e.g. in amoebae and tissue cells) the other major class of substratum-associated motility in eukaryotes, gliding, has received relatively little attention. The net slime mold Labyrinthula provides a useful laboratory model for studying this process since it exhibits a particular kind of gliding in its plasmodial stage. Here nucleated spindle cells glide along self-established cytoplasmic trackways in a predominantly unidirectional manner, at 1,2 ,m/s. These trackways, upon which gliding is dependent, are held by filopodial tethers some distance off the well-developed reticulopodial mesh anchoring the plasmodium onto the substratum. Reflection interference microscopy resolves this matrix in live plasmodia. The axially disposed cytoskeletal elements of the trackways are revealed by rhodamine-labelled phalloidin to be rich in F-actin. A weft of peripheral, rapidly extending filopodia (50 ,m/min) typifies the expanding regions of the plasmodium. Here spindle cells are recruited before emigrating into newly differentiated trackways. Immunoblotting whole plasmodia or a sucrose-soluble cytoplasmic extract reveals a single actin-positive band of Mr 48 kDa. Polyclonal antibodies to two distinct myosin peptide sequences identify a single myosin HC (Mr 96 kDa) in immunoblots. Gliding was reversibly blocked by 10 mM 2,3-butanedione-2-monoxime, a myosin ATPase inhibitor, but it was insensitive to the actin-binding drugs cytochalasin D and phalloidin. We suggest that the force (>50 pN) for gliding motility results from interaction of myosin molecules, associated with the spindle cells, with trackway F-actin via the bothrosomes. [source]


Na+ -H+ exchanger 3 (NHE3) is present in lipid rafts in the rabbit ileal brush border: a role for rafts in trafficking and rapid stimulation of NHE3

THE JOURNAL OF PHYSIOLOGY, Issue 2 2001
Xuhang Li
1Rabbit ileal Na+ -absorbing cell Na+ -H+ exchanger 3 (NHE3) was shown to exist in three pools in the brush border (BB), including a population in lipid rafts. Approximately 50 % of BB NHE3 was associated with Triton X-100-soluble fractions and the other ,50 % with Triton X-100-insoluble fractions; ,33 % of the detergent-insoluble NHE3 was present in cholesterol-enriched lipid microdomains (rafts). 2The raft pool of NHE3 was involved in the stimulation of BB NHE3 activity with epidermal growth factor (EGF). Both EGF and clonidine treatments were associated with a rapid increase in the total amount of BB NHE3. This EGF- and clonidine-induced increase of BB NHE3 was associated with an increase in the raft pool of NHE3 and to a smaller extent with an increase in the total detergent-insoluble fraction, but there was no change in the detergent-soluble pool. In agreement with the rapid increase in the amount of NHE3 in the BB, EGF also caused a rapid stimulation of BB Na+ -H+ exchange activity. 3Disrupting rafts by removal of cholesterol with methyl-,-cyclodextrin (M,CD) or destabilizing the actin cytoskeleton with cytochalasin D decreased the amount of NHE3 in early endosomes isolated by OptiPrep gradient fractionation. Specifically, NHE3 was shown to associate with endosomal vesicles immunoisolated by anti-EEA1 (early endosomal autoantigen 1) antibody-coated magnetic beads and the endosome-associated NHE3 was decreased by cytochalasin D and M,CD treatment. 4We conclude that: (i) a pool of ileal BB NHE3 exists in lipid rafts; (ii) EGF and clonidine increase the amount of BB NHE3; (iii) lipid rafts and to a lesser extent, the cytoskeleton, but not the detergent-soluble NHE3 pool, are involved in the EGF- and clonidine-induced acute increase in amount of BB NHE3; (iv) lipid rafts and the actin cytoskeleton play important roles in the basal endocytosis of BB NHE3. [source]


Developmental reorientation of transverse cortical microtubules to longitudinal directions: a role for actomyosin-based streaming and partial microtubule-membrane detachment

THE PLANT JOURNAL, Issue 1 2008
Frank Sainsbury
Summary Transversely oriented cortical microtubules in elongating cells typically reorient themselves towards longitudinal directions at the end of cell elongation. We have investigated the reorientation mechanism along the outer epidermal wall in maturing leek (Allium porrum L.) leaves using a GFP-MBD microtubule reporter gene and fluorescence microscopy. Incubating leaf segments for 14,18 h with the anti-actin or anti-actomyosin agents, 20 ,m cytochalasin D or 20 mm 2,3-butanedione monoxime, inhibited the normal developmental reorientation of microtubules to the longitudinal direction. Observation of living cells revealed a small subpopulation of microtubules with their free ends swinging into oblique or longitudinal directions, before continuing to assemble in the new direction. Electron microscopy confirmed that longitudinal microtubules are partly detached from the plasma membrane. Incubating leaf segments with 0.2% 1°-butanol, an activator of phospholipase D, which has been implicated in plasma membrane,microtubule anchoring, promoted the reorientation, presumably by promoting microtubule detachment from the membrane. Stabilizing microtubules with 10 ,m taxol also promoted longitudinal orientation, even in the absence of cytoplasmic streaming. These results were consistent with confocal microscopy of live cells before and after drug treatments, which also revealed that the slow (days) global microtubule reorientation is superimposed over short-term (hours) regional cycling in a clockwise and an anti-clockwise direction. We propose that partial detachment of transverse microtubules from the plasma membrane in maturing cells exposes them to hydrodynamic forces of actomyosin-driven cytoplasmic streaming, which bends or shifts pivoting microtubules into longitudinal directions, and thus provides an impetus to push microtubule dynamics in the new direction. [source]


Identification of a novel family of 70 kDa microtubule-associated proteins in Arabidopsis cells

THE PLANT JOURNAL, Issue 4 2005
Andrey V. Korolev
Summary Most plant microtubule-associated proteins (MAPs) have homologues across the phylogenetic spectrum. To find potential plant-specific MAPs that will have evaded bioinformatic searches we devised a low stringency method for isolating proteins from an Arabidopsis cell suspension on endogenous taxol-microtubules. By tryptic peptide mass fingerprinting we identified 55 proteins that were enriched on taxol-microtubules. Amongst a range of known MAPs, such as kinesins, MAP65 isoforms and MOR1, we detected ,unknown' 70 kDa proteins that belong to a family of five closely related Arabidopsis proteins having no known homologues amongst non-plant organisms. To verify that AtMAP70-1 associates with microtubules in vivo, it was expressed as a GFP fusion. This confirmed that the protein decorates all four microtubule arrays in both transiently infected Arabidopsis and stably transformed tobacco BY-2 suspension cells. Microtubule-directed drugs perturbed the localization of AtMAP70-1 but cytochalasin D did not. AtMAP70-1 contains four predicted coiled-coil domains and truncation studies identified a central domain that targets the fusion protein to microtubules in vivo. This study therefore introduces a novel family of plant-specific proteins that interact with microtubules. [source]


Differential modulation of innate immune cell functions by the Burkholderia cepacia complex: Burkholderia cenocepacia but not Burkholderia multivorans disrupts maturation and induces necrosis in human dendritic cells

CELLULAR MICROBIOLOGY, Issue 10 2008
Kelly L. MacDonald
Summary Burkholderia cepacia complex (BCC) bacteria cause pulmonary infections that can evolve into fatal overwhelming septicemia in chronic granulomatous disease or cystic fibrosis patients. Burkholderia cenocepacia and Burkholderia multivorans are responsible for the majority of BCC infections in cystic fibrosis patients, but B. cenocepacia is generally associated with a poorer prognosis than B. multivorans. The present study investigated whether these pathogens could modulate the normal functions of primary human monocyte-derived dendritic cells (DCs), important phagocytic cells that act as critical orchestrators of the immune response. Effects of the bacteria on maturation of DCs were determined using flow cytometry. DCs co-incubated for 24 h with B. cenocepacia, but not B. multivorans, had reduced expression of costimulatory molecules when compared with standard BCC lipopolysaccharide-matured DCs. B. cenocepacia, but not B. multivorans, also induced necrosis in DCs after 24 h, as determined by annexin V and propidium iodide staining. DC necrosis only occurred after phagocytosis of live B. cenocepacia; DCs exposed to heat-killed bacteria, bacterial supernatant or those pre-treated with cytochalasin D then exposed to live bacteria remained viable. The ability of B. cenocepacia to interfere with normal DC maturation and induce necrosis may contribute to its pathogenicity in susceptible hosts. [source]


Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells requires protein kinase C-, activation

CELLULAR MICROBIOLOGY, Issue 9 2008
Ambrose Jong
Summary Pathogenic fungus Cryptococcus neoformans has a predilection for the central nervous system causing devastating meningoencephalitis. Traversal of C. neoformans across the blood,brain barrier (BBB) is a crucial step in the pathogenesis of C. neoformans. Our previous studies have shown that the CPS1 gene is required for C. neoformans adherence to the surface protein CD44 of human brain microvascular endothelial cells (HBMEC), which constitute the BBB. In this report, we demonstrated that C. neoformans invasion of HBMEC was blocked in the presence of G109203X, a protein kinase C (PKC) inhibitor, and by overexpression of a dominant-negative form of PKC, in HBMEC. During C. neoformans infection, phosphorylation of PKC, was induced and the PKC enzymatic activity was detected in the HBMEC membrane fraction. Our results suggested that the PKC, isoform might play a crucial role during C. neoformans invasion. Immunofluorescence microscopic images showed that induced phospho-PKC, colocalized with ,-actin on the membrane of HBMEC. In addition, cytochalasin D (an F-filament-disrupting agent) inhibited fungus invasion into HBMEC in a dose-dependent manner. Furthermore, blockage of PKC, function attenuated actin filament activity during C. neoformans invasion. These results suggest a significant role of PKC, and downstream actin filament activity during the fungal invasion into HBMEC. [source]


Burkholderia pseudomallei stimulates low interleukin-8 production in the human lung epithelial cell line A549

CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2004
P. UTAISINCHAROEN
SUMMARY Melioidosis is a life-threatening disease caused by Burkholderia pseudomallei. The lung is the most commonly affected organ, resulting in abscess formation in patients with chronic melioidosis. Previous study has shown that B. pseudomallei was able to invade and multiply in epithelial cells. In the present study, we have demonstrated that B. pseudomallei is able to stimulate interleukin 8 (IL-8) production from the human alveolar lung epithelium cell line A549. However, the level of IL-8 production was significantly lower than when the cells were infected with other Gram-negative bacteria such as Salmonella enterica serovar Typhi (S. typhi) which were used for comparison. The degree of I,B, degradation in the B. pseudomallei -infected cells was lower than that of the S. typhi -infected cells, suggesting that B. pseudomallei is also a poorer cell activator. Inhibition of B. pseudomallei invasion by cytochalasin D did not interfere with either IL-8 production or I,B, degradation, indicating that bacterial uptake is not required for the production of this chemokine. Thus, it appears that the signalling initiated by the interaction of B. pseudomallei with the epithelial cell surface is sufficient for epithelial cell activation. [source]