Cysteine-rich Secretory Protein (cysteine-rich + secretory_protein)

Distribution by Scientific Domains


Selected Abstracts


Cysteine-rich secretory proteins are not exclusively expressed in the male reproductive tract

DEVELOPMENTAL DYNAMICS, Issue 11 2008
Thulasimala Reddy
The Cysteine-RIch Secretory Proteins (CRISPs) are abundantly produced in the male reproductive tract of mammals and within the venom of reptiles and have been shown to regulate ion channel activity. CRISPs, along with the Antigen-5 proteins and the Pathogenesis related-1 (Pr-1) proteins, form the CAP superfamily of proteins. Analyses of EST expression databases are increasingly suggesting that mammalian CRISPs are expressed more widely than in the reproductive tract. We, therefore, conducted a reverse transcription PCR expression profile and immunohistochemical analyses of 16 mouse tissues to define the sites of production of each of the four murine CRISPs. These data showed that each of the CRISPs have distinct and sometimes overlapping expression profiles, typically associated with the male and female reproductive tract, the secretory epithelia of exocrine glands, and immune tissues including the spleen and thymus. These investigations raise the potential for a role for CRISPs in general mammalian physiology. Developmental Dynamics 237:3313,3323, 2008. © 2008 Wiley-Liss, Inc. [source]


Purification, crystallization and preliminary X-ray crystallographic analysis of a cysteine-rich secretory protein (CRISP) from Naja atra venom

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 10 2004
Yu-Ling Wang
Cysteine-rich secretory proteins (CRISPs) play an important role in the innate immune system and are transcriptionally regulated by androgens in several tissues. The proteins are mostly found in the epididymis and granules of mammals, whilst a number of snake venoms also contain CRISP-family proteins. The natrin protein from the venom of Naja atra (Taiwan cobra), which belongs to a family of CRISPs and has a cysteine-rich C-­terminal amino-acid sequence, has been purified using a three-stage chromatography procedure and crystals suitable for X-ray analysis have been obtained using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected to 1.58,Å resolution using synchrotron radiation; the crystals belong to space group C2221, with unit-cell parameters a = 59.172, b = 65.038, c = 243.156,Å. There are two protein molecules in the asymmetric unit and the Matthews coefficient is estimated to be 2.35,Å3,Da,1, corresponding to a solvent content of 47.60%. [source]


Immunohistochemical detection of cysteine-rich secretory protein 3 in tissue and in serum from men with cancer or benign enlargement of the prostate gland

THE PROSTATE, Issue 6 2006
Anders Bjartell
Abstract BACKGROUND Recently, the gene for cysteine-rich secretory protein 3 (CRISP-3) was reported to be highly upregulated in prostate cancer (PCa) compared to benign prostatic tissue. The current aims were to investigate diagnostic use of tissue expression and immunodetection in serum of CRISP-3 for detection or monitoring of PCa. METHODS Radical prostatectomy specimens and tissue microarrays from transurethral resections and metastases were analyzed for CRISP-3 and PSA by immunohistochemistry. CRISP-3 in tissue homogenates and in serum was measured by an in-house ELISA and PSA by a commercially available immunoassay. RESULTS Immunostaining for CRISP-3 in benign prostatic epithelium was generally weak or not detectable. Specific and strong immunostaining was found in a major proportion of cells in high-grade prostatic-intraepithelial-neoplasia (HG-PIN,12/17 patients), in most primary tumors (111/115), and in lymph node (11/15) and bone (12/15) metastases. CRISP-3 immunostaining intensity was regularly strong in areas of Gleason grades 4/5, where PSA-immunoreaction was less intense. Serum levels of CRISP-3 were not different in patients with PCa (n,=,152) compared to men with BPH (n,=,81). There was a very weak co-variation between levels of CRISP-3 versus PSA in serum from PCa patients (P,<,0.05). After orchiectomy, levels of CRISP-3 in serum decreased in median with 11% compared to a 97% median decrease of PSA in serum from 15/20 patients with advanced PCa. CONCLUSIONS Strong immunostaining for CRISP-3 is common in HG-PIN and preserved in most PCa specimens, which warrant further immunohistochemical studies of CRISP-3 in PCa. Serum levels of CRISP-3 do not primarily reflect PCa. Prostate 66:591,603, 2006. © 2005 Wiley-Liss, Inc. [source]


Purification, crystallization and preliminary X-ray crystallographic analysis of a cysteine-rich secretory protein (CRISP) from Naja atra venom

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 10 2004
Yu-Ling Wang
Cysteine-rich secretory proteins (CRISPs) play an important role in the innate immune system and are transcriptionally regulated by androgens in several tissues. The proteins are mostly found in the epididymis and granules of mammals, whilst a number of snake venoms also contain CRISP-family proteins. The natrin protein from the venom of Naja atra (Taiwan cobra), which belongs to a family of CRISPs and has a cysteine-rich C-­terminal amino-acid sequence, has been purified using a three-stage chromatography procedure and crystals suitable for X-ray analysis have been obtained using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected to 1.58,Å resolution using synchrotron radiation; the crystals belong to space group C2221, with unit-cell parameters a = 59.172, b = 65.038, c = 243.156,Å. There are two protein molecules in the asymmetric unit and the Matthews coefficient is estimated to be 2.35,Å3,Da,1, corresponding to a solvent content of 47.60%. [source]


A polymorphism within the equine CRISP3 gene is associated with stallion fertility in Hanoverian warmblood horses

ANIMAL GENETICS, Issue 3 2007
H. Hamann
Summary Fertility of stallions is of high economic importance, especially for large breeding organisations and studs. Breeding schemes with respect to fertility traits and selection of stallions at an early stage may be improved by including molecular genetic markers associated with traits. The genes coding for equine cysteine-rich secretory proteins (CRISPs) are promising candidate genes because previous studies have shown that CRISPs play a role in the fertilising ability of male animals. We have previously characterised the three equine CRISP genes and identified a non-synonymous polymorphism in the CRISP1 gene. In this study, we report one non-synonymous polymorphism in the CRISP2 gene and four non-synonymous polymorphisms in the CRISP3 gene. All six CRISP polymorphisms were genotyped in 107 Hanoverian breeding stallions. Insemination records of stallions were used to analyse the association between CRISP polymorphisms and fertility traits. Three statistical models were used to evaluate the influence of single mutations, genotypes and haplotypes of the polymorphisms. The CRISP3 AJ459965:c.+622G>A SNP leading to the amino acid substitution E208K was significantly associated with the fertility of stallions. Stallions heterozygous for the CRISP3 c.+622G>A SNP had lower fertility than homozygous stallions (P = 0.0234). The pregnancy rate per cycle in these stallions was estimated to be ,7% lower than in stallions homozygous at this position. [source]