Home About us Contact | |||
Cylindrical Shape (cylindrical + shape)
Selected AbstractsMorphological, structural and optical study of quasi-1D SnO2 nanowires and nanobeltsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 10-11 2005D. Calestani Abstract 0.1,0.3 mm thick entanglements of quasi-one-dimensional semiconducting Tin dioxide nanocrystals, in form of nanowires and nanobelts, are successfully grown by low cost Chemical Vapour Deposition directly on large area (100 mm2) Al2O3, SiO2 and Si substrates. Their lateral size ranges from 50 to 700 nm and their length can achieve several hundreds of micrometers. Transmission Electron Microscopy reveals either the nanowires and the nanobelts grow in the tetragonal Rutile structure. Diffraction contrast analyses and selected area diffraction investigations show the nanowires are single crystals without defects while the nanobelts sometimes present twins inside. An almost cylindrical shape and an average diameter of about 30,50 nm for the smallest nanowires is reported. X-ray diffraction investigations exclude the presence of spurious phases. A broad band structured in two emissions peaked at about 450 nm and 560 nm is revealed by large area Cathotoluminescence, while single nanocrystal spectroscopy shows that the reduction of the lateral dimension of the nanobelts from 1000 nm to 50 nm blue-shifts the main emission band at 560 nm of about 40 nm (at room temperature). These preliminary results suggest a possible role of oxygen vacancies and of the surface/volume ratio on the origin and the blue shift of Cathodoluminescence spectra. The near band edge emission, typical of bulk tin dioxide (,320 nm), is not found in nanobelts narrower than 1000 nm. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Symbiosis of Mycale (Mycale) vansoesti sp. nov. (Porifera, Demospongiae) with a coralline alga from North Sulawesi (Indonesia)INVERTEBRATE BIOLOGY, Issue 3 2006Barbara Calcinai Abstract. The symbiotic association between the new sponge species Mycale vansoesti and the coralline alga Amphiroa sp. from the Bunaken Marine Park (North Sulawesi, Indonesia) is described. The alga completely pervades the sponge. The color of the sponge ectosome is white, both on the external surface and on the atrial wall, but where the alga is present the sponge takes on the light pink color of the alga. The sponge spicular complement is characterized by mycalostyles, anisochelae of two types, sigmas (often "C" shaped), and extremely abundant toxas organized in bundles forming toxadragma. In the association, the sponge shows very low silicate value, and consequently the alga represents the main skeleton of the sponge. On the other hand, the sponge affects the morphology of the alga, leading to a cylindrical shape, with thalli running parallel to the sponge surface. This association seems to be obligate for the sponge, as we found no sponges of this species living in isolation. [source] Role of Mn of PEG in the morphology and properties of electrospun PEG/CA composite fibers for thermal energy storageAICHE JOURNAL, Issue 3 2009Changzhong Chen Abstract As an aim toward developing novel class of form-stable polymer-matrix phase change materials for thermal energy storage, ultrafine composite fibers based on cellulose acetate and polyethylene glycol (PEG) with five different molecular weight (Mn) grades were prepared by electrospinning. The effects of Mn of PEG on morphology, thermal properties and mechanical properties of the composite fibers were studied by field emission scanning electron microscopy, differential scanning calorimetry, and tensile testing, respectively. It was found that the composite fibers were smooth and cylindrical shape, with the average diameters ranging from about 1000 to 1750 nm which increased with Mn of PEG. Thermal analysis results showed that the composite fibers imparted balanced thermal storage and release properties in different temperature ranges with the variation of Mn of PEG. Thermal cycling test indicated that the prepared composites had excellent thermal stability and reliability even they were subjected to 100 heating-cooling thermal cycles. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] NONLINEAR CONSTRAINED OPTIMIZATION of THERMAL PROCESSING II.JOURNAL OF FOOD PROCESS ENGINEERING, Issue 3 2003FINITE CYLINDRICAL GEOMETRIES, VARIABLE PROCESS TEMPERATURE PROFILES to REDUCE PROCESS TIME, to IMPROVE NUTRIENT RETENTION IN SPHERICAL ABSTRACT Conventional methods for thermal processing of foods use constant processing temperature profiles (CPTPs) for a prescribed processing time, which is based on achieving a required microbial lethality to comply with public health standards. This also results in degradation of nutrients and quality factors. the variable process temperature profiles (VPTPs) obtained by using optimization methods can reduce quality losses and/or processing time compared to CPTPs. the objective of this research was to evaluate VPTPs using the Complex Method to reduce the processing time and/or improve quality retention for a specified level of lethality in thermal processing of conduction heated foods. the VPTPs were obtained for volume average retention of thiamine considering different sizes of spheres (small and large) and finite cylinders (small and large), and the thiamine retention and processing time results were compared with a conventional method (processing at 121.1C) for a specified lethality level. the use of VPTPs resulted in a 37 and 10% decrease in processing times in spherical and 40 % and 6 % for finite cylindrical shapes, for the same objective function value and specified lethality compared to the CPTP process. For the same processing time, the improvements in thiamine destruction were 3.7 and 2 % for spheres, and 3.9 and 2.2% for finite cylinders. [source] Optical characterization of GaN microcavity fabricated by wet etchingPHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2006C.-Y. Lu Abstract We report a novel technique to fabricate gallium nitride (GaN) microcavities by combining the methods of photo-enhanced wet chemical oxidation and crystallographic etching. Such GaN microcavities exhibit mirror-like vertical facets composing of {1100}GaN and various gemoetry of hexagonal, trigonal and cylindrical shapes. The emission spectra of the GaN micro-cavities are found in resonance with the whispering gallery (WG) modes when pumped with a 266 nm Nd:YAG laser. The signatures of GaN microcavities were further characterized by an increase of the WG mode spacing with the reduced device size and suppression of the side mode emission intensity with pump intensity. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |