Cyclin D (cyclin + d)

Distribution by Scientific Domains


Selected Abstracts


Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals

FEBS JOURNAL, Issue 16 2009
Joan Duran
The ubiquitous isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (uPFK-2), a product of the Pfkfb3 gene, plays a crucial role in the control of glycolytic flux. In this study, we demonstrate that Pfkfb3 gene expression is increased in streptozotocin-induced diabetic mouse liver. The Pfkfb3/-3566 promoter construct linked to the luciferase reporter gene was delivered to the liver via hydrodynamic gene transfer. This promoter was upregulated in streptozotocin-induced diabetic mouse liver compared with transfected healthy cohorts. In addition, increases were observed in Pfkfb3 mRNA and uPFK-2 protein levels, and intrahepatic fructose-2,6-bisphosphate concentration. During streptozotocin-induced diabetes, phosphorylation of both p38 mitogen-activated protein kinase and Akt was detected, together with the overexpression of the proliferative markers cyclin D and E2F. These findings indicate that uPFK-2 induction is coupled to enhanced hepatocyte proliferation in streptozotocin-induced diabetic mouse liver. Expression decreased when hepatocytes were treated with either rapamycin or LY 294002. This shows that uPFK-2 regulation is phosphoinositide 3-kinase,Akt,mammalian target of rapamycin dependent. These results indicate that fructose-2,6-bisphosphate is essential to the maintenance of the glycolytic flux necessary for providing energy and biosynthetic precursors to dividing cells. [source]


Impaired liver regeneration and increased oval cell numbers following T cell,mediated hepatitis,

HEPATOLOGY, Issue 1 2007
Ian N. Hines
The regeneration of liver tissue following transplantation is often complicated by inflammation and tissue damage induced by a number of factors, including ischemia and reperfusion injury and immune reactions to the donor tissue. The purpose of the current study is to characterize the effects of T cell,mediated hepatitis induced by concanavalin A (ConA) on the regenerative response in vivo. Liver regeneration following a partial (70%) hepatectomy (pHx) was associated with elevations in serum enzymes and the induction of key cell cycle proteins (cyclin D, cyclin E, and Stat3) and hepatocyte proliferation. The induction of T cell,mediated hepatitis 4 days before pHx increased serum enzymes 48 hours after pHx, reduced early cyclin D expression and Stat3 activation, and suppressed hepatocyte proliferation. This inhibition of proliferation was also associated with increased expression of p21, the activation of Smad2, the induction of transforming growth factor beta and interferon gamma expression, and reduced hepatic interleukin 6 production. Moreover, the ConA pretreatment increased the numbers of separate oval cell-like CD117+ cells and hematopoietic-like Sca-1+ cell populations 48 hours following pHx. The depletion of natural killer (NK) cells, an important component of the innate immune response, did not affect liver injury or ConA-induced impairment of hepatocyte proliferation but did increase the numbers of both CD117-positive and Sca-1,positive cell populations. Finally, splenocytes isolated from ConA-pretreated mice exerted cytotoxicity toward autologous bone marrow cells in an NK cell,dependent manner. Conclusion: T cell,mediated hepatitis alters early cytokine responses, reduces hepatocellular regeneration, and induces NK cell,sensitive oval cell and hematopoietic-like cell expansion following pHx. (HEPATOLOGY 2007;46:229,241.) [source]


Induction of cytotoxicity in human lung adenocarcinoma cells by 6- O -carboxypropyl-,-tocotrienol, a redox-silent derivative of ,-tocotrienol

INTERNATIONAL JOURNAL OF CANCER, Issue 5 2005
Yoshihisa Yano
Abstract Tocotrienols are one of the most potent anticancer agents of all natural compounds and the anticancer property may be related to the inactivation of Ras family molecules. The anticancer potential of tocotrienols, however, is weakened due to its short elimination half life in vivo. To overcome the disadvantage and reinforce the anticancer activity in tocotrienols, we synthesized a redox-silent analogue of ,-tocotrienol (T3), 6- O -carboxypropyl-,-tocotrienol (T3E). We estimated the possibility of T3E as a new anticancer agent against lung adenocarcinoma showing poor prognosis based on the mutation of ras gene. T3E showed cytotoxicity against A549 cells, a human lung adenocarcinoma cell line with a ras gene mutation, in a dose-dependent manner (0,40 ,M), whereas T3 and a redox-silent analogue of ,-tocopherol (T), 6- O -carboxypropyl-,-tocopherol (TE), showed much less cytotoxicity in cells within 40 ,M. T3E cytotoxicity was based on the accumulation of cells in the G1-phase of the cell-cycle and the subsequent induction of apoptosis. Similar to this event, 24-hr treatment of A549 cells with 40 ,M T3E caused the inhibition of Ras farnesylation, and a marked decrease in the levels of cyclin D required for G1/S progression in the cell-cycle and Bcl-xL, a key anti-apoptotic molecule. Moreover, the T3E-dependent inhibition of RhoA geranyl-geranylation is an inducing factor for the occurrence of apoptosis in A549 cells. Our results suggest that T3E suppresses Ras and RhoA prenylation, leading to negative growth control against A549 cells. In conclusion, a redox-silent analogue of T3, T3E may be a new candidate as an anticancer agent against lung adenocarcinoma showing poor prognosis based on the mutation of ras genes. © 2005 Wiley-Liss, Inc. [source]


Elevation of cyclin D1 following trimethyltin induced hippocampal neurodegeneration

JOURNAL OF NEUROCHEMISTRY, Issue 2002
R. N. Wine
Previous work has suggested that a major contributor to neuronal cell death is the aberrant induction of the cell cycle process, as indicated by an up-regulation of cyclin D. In order to examine the temporal and spatial relationship of cyclin D in a model of acute neurodegeneration, the hippocampal toxicant, trimethyltin (TMT; 2.0 mg/kg), was administered to 21-day old CD,1 male mice and the level and cellular localization of cyclin D1 examined. Within 24 h following TMT, dentate granule cells of the hippocampus showed evidence of neuronal necrosis resulting in severe cell loss over a 3-day period. The pyramidal cell layer was spared with only sparse punctate neuronal necrosis. Microglia response was seen at 72 h with ameboid microglia present in the dentate and ramified microglia present in the pyramidal cell layer, contributing to the elevation seen in TNF-alpha mRNA levels. A transient elevation was seen in mRNA levels for cyclin D1 over 48,72 h post-TMT. Immunohistochemistry demonstrated a transient increase in staining for cyclin D1 in CA1 pyramidal neurons as early as 24 h. Punctate staining occurred in neurons throughout the dentate at 48 h. BrdU positive cells were present along the inner blades of the dentate in control animals. Following TMT exposure, an increase was seen in both the number of neurons stained and a diffusion of the staining pattern into the full dentate region. Thus, in TMT-induced neurodegeneration, cyclin D1 is not expressed in the vulnerable neurons but rather in neurons spared from degeneration. This expression pattern appears to not be linked to an increase in the cellular processes for proliferation as the majority of BrdU positive cells were present in the region of neuronal damage. [source]


Increased KIT signalling with up-regulation of cyclin D correlates to accelerated proliferation and shorter disease-free survival in gastrointestinal stromal tumours (GISTs) with KIT exon 11 deletions,

THE JOURNAL OF PATHOLOGY, Issue 2 2008
F Haller
Abstract Gastrointestinal stromal tumours (GISTs) with deletions in KIT exon 11 are characterized by higher proliferation rates and shorter disease-free survival times, compared to GISTs with KIT exon 11 point mutations. Up-regulation of cyclin D is a crucial event for entry into the G1 phase of the cell cycle, and links mitogenic signalling to cell proliferation. Signalling from activated KIT to cyclin D is directed through the RAS/RAF/ERK, PI3K/AKT/mTOR/EIF4E, and JAK/STATs cascades. ERK and STATs initiate mRNA transcription of cyclin D, whereas EIF4E activation leads to increased translation efficiency and reduced degradation of cyclin D protein. The aim of the current study was to analyse the mRNA and protein expression as well as protein phosphorylation of central hubs of these signalling cascades in primary GISTs, to evaluate whether tumours with KIT exon 11 deletions and point mutations differently utilize these pathways. GISTs with KIT exon 11 deletions had significantly higher mitotic counts, higher proliferation rates, and shorter disease-free survival times. In line with this, they had significantly higher expression of cyclin D on the mRNA and protein level. Furthermore, there was a significantly higher amount of phosphorylated ERK1/2, and a higher protein amount of STAT3, mTOR, and EIF4E. PI3K and phosphorylated AKT were also up-regulated, but this was not significant. Ultimately, GISTs with KIT exon 11 deletions had significantly higher phosphorylation of the central negative cell-cycle regulator RB. Phosphorylation of RB is accomplished by activated cyclin D/CDK4/6 complex, and marks a central event in the release of the cell cycle. Altogether, these observations suggest increased KIT signalling with up-regulation of cyclin D as the basis for the unfavourable clinical course in GISTs with KIT exon 11 deletions. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Human GCIP interacts with CT847, a novel Chlamydia trachomatis type III secretion substrate, and is degraded in a tissue-culture infection model

CELLULAR MICROBIOLOGY, Issue 10 2007
Blandine Chellas-Géry
Summary The obligate intracellular bacterium Chlamydia trachomatis occupies a parasitophorous vacuole and employs a type III secretion mechanism to translocate host-interactive proteins. These proteins most likely contribute to pathogenesis through modulation of host cell mechanisms crucial for the establishment and maintenance of a permissive intracellular environment. Using a surrogate Yersinia type III secretion system (T3SS), we have identified the conserved gene product CT847 as a chlamydial T3SS substrate. Yeast two-hybrid studies using CT847 as bait to screen a HeLa cell cDNA library identified an interaction with mammalian Grap2 cyclin D- interacting protein (GCIP). Immunoblot analyses of C. trachomatis -infected HeLa cells showed that GCIP levels begin to decrease (as compared with mock-infected HeLa cells) between 8 h and 12 h post infection. GCIP was virtually undetectable in 24 h time point material. This decrease was inhibited by proteasome inhibitors lactacystin and MG-132, and the T3SS inhibitor Compound 1. CT847 was detectible in purified reticulate body but not elementary body lysates, and reverse transcription polymerase chain reaction (RT-PCR) expression analyses indicate a mid-cycle expression pattern. Both of these findings are consistent with CT847 contributing to the observed effect on GCIP. Given the established roles of GCIP, we believe that we have discovered a novel C. trachomatis antihost protein whose activity is relevant to chlamydial pathogenesis. [source]


Cyclin-dependent kinase inhibitors for treating cancer

MEDICINAL RESEARCH REVIEWS, Issue 6 2001
Peter L. Toogood
Abstract Cyclin dependent kinases (Cdks) are essential enzymes for the control of cell cycle progression. Inhibitors of cyclin-dependent kinases are anticipated to possess therapeutic utility against a wide variety of proliferative diseases, especially cancer. The field of published small molecule Cdk inhibitors is briefly reviewed here as background to a summary of work on a class of pyrido[2,3- d]pyrimidine Cdk inhibitors. Compounds from this class are described that display potency against cyclin D/Cdk4 up to IC50,=,0.004 ,M. Good to moderate selectivity for cyclin D/Cdk4 is also reported for compounds in this structural class. Structure-activity relationship data are presented for substitution at the C2 and N8 positions and these data are interpreted in the context of a binding model that is based on the Cdk2 crystal structure. A representative cyclin D/Cdk4 inhibitor (compound 56) is demonstrated to selectively inhibit the proliferation of an Rb+ cell line vs. a matched Rb, cell line and to produce a distinct G1 block consistent with cyclin D/Cdk4 inhibition in cells. © 2001 John Wiley & Sons, Inc. Med Res Rev, 21, No. 6, 487,498, 2001 [source]


CDK2 regulation through PI3K and CDK4 is necessary for cell cycle progression of primary rat hepatocytes

CELL PROLIFERATION, Issue 4 2007
L. Wierød
In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G1 phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. Methods and results: In this study, we have explored the role of CDK4 activity during G1 progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. Conclusions: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G1 phase. [source]