Home About us Contact | |||
Cyclin B1 (cyclin + b1)
Selected AbstractsAlteration of subcellular and cellular expression patterns of cyclin B1 in renal cell carcinoma is significantly related to clinical progression and survival of patientsINTERNATIONAL JOURNAL OF CANCER, Issue 4 2006Stephen O. Ikuerowo Abstract Cyclin B1, identified as a regulator of late cell cycle, is involved in the development and progression of a variety of human malignancies. To clarify the role of cyclin B1 in the pathogenesis and prognosis of renal cell carcinoma (RCC), protein expression was compared with clinicopathological characteristics of patients as well as the long-term survival after surgical therapy. Expression analysis was carried out by immunohistochemistry and tissue microarray analysis. The microarrays that represented the primary tumors, their invasion front and normal peritumoral renal parenchyma contained 753 tissue cores obtained from 251 randomly selected nephrectomy specimens. Immunopositivity within the primary tumors was significantly associated with tumor stage (pT) (p < 0.01), lymph node status (pN) (p < 0.01) as well as the presence of systemic metastatic disease (p = 0.01). Subcellular expression in the cytoplasm of tumor cells significantly correlated with pT (p = 0.02) and pN (p = 0.03). When peritumoral tissue samples exhibited a relative amount of <10% of positively reacting epithelial cells, cyclin B positivity was identified to predict long-term survival of patients in univariate analysis (p < 0.01) whereas borderline significance was observed in multivariate statistical analysis (p = 0.05). Increased intratumoral cyclin B1 positivity and aberrant localization of signals within the cytoplasm of tumor cells is positively correlated with the tendency towards tumor progression, indicating the significant role of cyclin B1 in the development and pathogenesis of RCC. The result of uni- and multivariate statistical analysis suggests the prognostic value of cyclin B1 for RCC patients. © 2006 Wiley-Liss, Inc. [source] Expression patterns and cell cycle profiles of PCNA, MCM6, cyclin D1, cyclin A2, cyclin B1, and phosphorylated histone H3 in the developing mouse retinaDEVELOPMENTAL DYNAMICS, Issue 3 2008Kirston M. Barton Abstract A challenge in studying organogenesis is the ability to identify progenitor cell populations. To address this problem, we characterized the expression patterns of cell cycle proteins during mouse retinal development and used flow cytometry to determine the expression profiles in the cell cycle. We found that MCM6 and PCNA are expressed in essentially all retinal progenitor cells throughout the proliferative period and these proteins are readily detectable in all cell cycle phases. Furthermore, their expression levels are downregulated as cells exit the cell cycle and differentiate. We also analyzed the expression of Cyclins D1, A2, and B1, and phosphorylated Histone H3 and found unexpected expression patterns and cell cycle profiles. The combined utilization of the markers tested and the use of flow cytometry should further facilitate the study of stem and progenitor cell behavior during development and in adult tissues. Developmental Dynamics 237:672,682, 2008. © 2008 Wiley-Liss, Inc. [source] Induction of G2/M phase arrest and apoptosis by a novel indoloquinoline derivative, IQDMA, in K562 cellsDRUG DEVELOPMENT RESEARCH, Issue 9 2006Yi-Hsiung Lin Abstract The indoloquinoline, IQDMA (N,-(11H-indolo[3,2-c]quinolin-6-yl)-N,N-dimethylethane-1,2-diamine), was identified as a novel antineoplastic agent with broad spectrum of antitumor activities against several human cancer cells. IQDMA-induced G2/M arrest was accompanied by up-regulation of the cyclin-dependent kinase inhibitors (CDKIs), p21 and p27, and down-regulation of Cdk1and Cdk2. IQDMA had no effect on the levels of cyclin A, cyclin B1, cyclin D3, or Cdc25C. IQDMA also increased apoptosis, as characterized by apoptotic body formation, increase of the sub G1 population and poly (ADP-ribose) polymerase (PARP) cleavage. Further mechanistic analysis demonstrated that IQDMA upregulated FasL protein expression, and kinetic studies showed the sequential activation of caspases-8, -3, and -9. Both caspase-8 and caspase-3 inhibitors, but not a caspase-9-specific inhibitor, suppressed IQDMA-induced cell death. These molecular alterations provide an insight into IQDMA-caused growth inhibition, G2/M arrest, and apoptotic death of K562 cells. Drug Dev. Res. 67:743,751, 2006. © 2006 Wiley-Liss, Inc. [source] CD34+ cells derived from fetal liver contained a high proportion of immature megakaryocytic progenitor cellsEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 5 2000Dong-Chu Ma Abstract: Endoreplication and maturation of the megakaryocyte (MK) may be retarded or delayed during ontogenesis. In this study, CD34+ cells were isolated from both human fetal liver and adult bone marrow and incubated with thrombopoietin (TPO). The cell number, morphological characteristics, platelet-associated antigen phenotype, maturation stage and DNA ploidy of CD41+cells were examined from day 0 to day 12 in culture. 1) TPO stimulated the proliferation of fetal liver (FL)-derived CD34+ cells with a mean 73.14-fold increase of CD41+ cells after 12 d in culture. Adult BM-derived CD34+ cells increased only slightly, with a mean 8.18-fold increase of CD41+ cells. 2) Although the membrane phenotype of both FL CD34+ -derived MKs and BM CD34+ -derived MKs analyzed with CD41a, CD42a, CD61 and CD34 were similar, all FL CD34+ -derived MKs were in maturation stage I and II and in low ploidy (<4N) class. By comparison, BM CD34+ MKs possessed 15% MKs in maturation stage III and IV and with 23% MKs in high ploidy class (>4N). 3) Most of cultured FL-derived CD34+ cells did not have a well developed demarcation system (DM) and numerous ,-granules after 12 d incubation. von Willebrand factor (vWF) appeared earlier on the cultured BM-derived CD34+ cells than on FL-derived CD34+ cells. 4) The expression of both cyclin E and cyclin B1 progressively increased in FL CD34+cells induced by TPO during 12 d in culture. 5) The expression of cyclin D1 gradually decreased in FL CD34+cells induced by TPO over 12 d incubation. 6) Immunocytochemical analysis showed that cyclin D3 was detected only in cytoplasm of cultured FL-derived CD34+ cells, whereas in both cytoplasm and nuclei of cultured BM-derived CD34+ cells. These data suggest that FL-derived CD34+ cells contain a high proportion of immature megakaryocytic progenitor cells. It further suggests that TPO can push these progenitor cells into proliferation by upregulating the expression of cyclins B1 and E, and drive a high proportion of cells into megakaryocytic lineage. [source] Terrein inhibits keratinocyte proliferation via ERK inactivation and G2/Mcell cycle arrestEXPERIMENTAL DERMATOLOGY, Issue 4 2008Dong-Seok Kim Abstract:, Terrein, a fungal metabolite, has been recently shown to have a strong antiproliferative effect on skin equivalents. In the present study, we further investigated the effects of terrein on the possible signalling pathways involved in the growth inhibition of human epidermal keratinocytes by examining the regulations of extracellular signal-regulated protein kinase (ERK) and of the Akt pathway by terrein. It was observed that ERK was inactivated by terrein and that keratinocyte proliferation was inhibited, whereas Akt was unaffected. The inhibition of the ERK pathway by U0126 (a specific ERK inhibitor) also had a dose-dependent antiproliferative effect on human keratinocytes. These results indicate that ERK inhibition is involved in keratinocyte growth inhibition by terrein. Moreover, flow cytometric analysis showed that terrein inhibits DNA synthesis, as evidenced by a reduction in the S phase and an increase in the G2/M phase of the cell cycle. Thus, we next examined changes in the expressions of G2/M cell cycle-related proteins. Terrein was found to downregulate cyclin B1 and Cdc2 without Cdc2 phosphorylation, but upregulated p27KIP1 (p27), a known inhibitor of cyclin-dependent kinase. These results suggest that terrein reduces human keratinocyte proliferation by inhibiting ERK and by decreasing the expressions of cyclin B1 and Cdc2 complex. [source] Over-expression of Aurora-A targets cytoplasmic polyadenylation element binding protein and promotes mRNA polyadenylation of Cdk1 and cyclin B1GENES TO CELLS, Issue 7 2005Takashi Sasayama Aurora-A is a centrosomal serine-threonine kinase that regulates mitosis. Over-expression of Aurora-A has been found in a wide range of tumors and has been implicated in oncogenic transformation. However, how Aurora-A over-expression contributes to promotion of carcinogenesis remains elusive. Immunohistochemical analysis of breast tumors revealed that over-expressed Aurora-A is not restricted to the centrosomes but is also found in the cytoplasm. This over-expressed Aurora-A appeared to be phosphorylated on Thr288, which is known to be required for its enzymatic activation. In analogy to Aurora-A's role in oocyte maturation and the early embryonic cell cycle, here we investigated whether ectopically over-expressed Aurora-A can similarly stimulate polyadenylation of mRNA in human somatic cultured cells by interacting with a human ortholog of cytoplasmic polyadenylation element binding protein, h-CPEB. In vitro experiments revealed that Aurora-A binds directly to, and phosphorylates, h-CPEB. We found that polyadenylation of mRNA tails of cyclin B1 and Cdk1 was synergistically stimulated when Aurora-A and h-CPEB were over-expressed, and they were further promoted in the presence of an Aurora-A activator Ajuba. Our results suggest a function of ectopically over-expressed Aurora-A that might be relevant for carcinogenesis. [source] Aging does not reduce the hepatocyte proliferative response of mice to the primary mitogen TCPOBOPHEPATOLOGY, Issue 4 2004Giovanna M. Ledda-Columbano It has been shown that the magnitude of DNA synthesis and the time at which maximal DNA synthesis occurs after two-thirds partial hepatectomy (PH) is greatly reduced in the liver of aged rodents compared to young animals. This reduction could represent an intrinsic defect in proliferation or a more specialized change in the response to PH. We therefore evaluated the proliferative capacity of hepatocytes in aged animals, following treatment with primary liver mitogens. We show that treatment of 12-month-old CD-1 mice with the hepatomitogen 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) caused an increase in hepatocyte proliferation similar to that seen in young (8-week-old) mice. The labeling index was 82% in the livers of aged mice versus 76% in young animals. Histological observation demonstrated that the number of hepatocytes entering mitoses was similar in both groups; the mitotic indices were 2.5 per thousand and 2.7 per thousand, respectively. Additional experiments showed that the timing of DNA synthesis and M phase were nearly identical in both aged and young mice. Stimulation of hepatocyte DNA synthesis was associated with increased expression of several cell cycle-associated proteins (cyclin D1, cyclin A, cyclin B1, E2F, pRb, and p107); all were comparable in aged mice and young mice. TCPOBOP treatment also increased expression of the Forkhead Box transcription factor m1b (Foxm 1b) to a similar degree in both groups. In conclusion, hepatocytes retain their proliferative capacity in old age despite impaired liver regeneration. These findings suggest that therapeutic use of mitogens would alleviate the reduction in hepatocyte proliferation observed in the elderly. (Hepatology 2000;40:981,988). [source] Growth hormone stimulates proliferation of old-aged regenerating liver through forkhead box m1bHEPATOLOGY, Issue 6 2003Katherine Krupczak-Hollis The Forkhead Box (Fox) proteins are an extensive family of transcription factors that shares homology in the winged helix DNA-binding domain and the members of which play essential roles in cellular proliferation, differentiation, and longevity. Reduced cellular proliferation during aging is associated with a progressive decline in both growth hormone (GH) secretion and Foxm1b expression. Liver regeneration studies with 12-month-old (old-aged) transgenic mice indicated that increased hepatocyte expression of Foxm1b alone is sufficient to restore hepatocyte proliferation to levels found in 2-month-old (young) regenerating liver. GH therapy in older people has been shown to cause an increase in cellular proliferation, but the transcription factors that mediated this stimulation in proliferation remain uncharacterized. In this study, we showed that human GH administration to old-aged Balb/c mice dramatically increased both expression of Foxm1b and regenerating hepatocyte proliferation. This increase in old-aged regenerating hepatocyte proliferation was associated with elevated protein expression of Cdc25A, Cdc25B, and cyclin B1, with reduced protein levels of cyclin-dependent kinase inhibitor p27Kip1 (p27). GH treatment also was found to stimulate hepatocyte proliferation and expression of Foxm1b protein without partial hepatectomy (PHx). Furthermore, GH treatment of young Foxm1b ,/, mice failed to restore regenerating hepatocyte DNA replication and mitosis caused by Foxm1b deficiency. These genetic studies provided strong evidence that the presence of Foxm1b is essential for GH to stimulate regenerating hepatocyte proliferation. In conclusion, our old-aged liver regeneration studies show that increased Foxm1b levels are essential for GH to stimulate hepatocyte proliferation, thus providing a mechanism for GH action in the elderly. [source] Earlier expression of the transcription factor HFH-11B diminishes induction of p21CIP1/WAF1 levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injuryHEPATOLOGY, Issue 6 2001Xinhe Wang Partial hepatectomy (PH) or toxic liver injury induces the proliferation of terminally differentiated hepatic cells to regenerate the original size of the adult liver. Previous PH liver regeneration studies showed that premature transgenic expression of the Forkhead Box M1b (FoxM1b, HFH-11B) transcription factor accelerated hepatocyte entry into DNA replication (S-phase). In this study, we used carbon tetrachloride (CCl4) liver injury to induce a different type of mouse liver regeneration and show that premature hepatic HFH-11B levels also accelerate the onset of hepatocyte S-phase in this injury model. Unlike PH liver regeneration, earlier hepatocyte proliferation after CCl4 liver injury is correlated with diminished transgenic hepatic levels of p21CIP1/WAF1 at the G1/S transition of the cell cycle. Differential hybridization of cDNA arrays and RNase protection studies determined that CCl4 regenerating liver of transgenic mice displayed early stimulated expression of the S-phase promoting cyclin D1 and cyclin E and sustained levels of Cdc25a phosphatase genes. Compared with previous PH liver regeneration studies, our data suggest that premature expression of HFH-11B activates distinct S-phase promotion pathways in the CCl4 liver injury model. Although proliferating transgenic hepatocytes induced by either PH or CCl4 liver injury displayed early expression of identical M-phase cyclin genes (cyclin B1, B2, A2, and F), only CCl4 regenerating transgenic liver exhibited earlier expression of the M-phase promoting Cdc25b. These studies suggest that CCl4 injury of transgenic liver not only uses the same mechanisms as PH to mediate accelerated hepatocyte entry into mitosis, but also promotes M-phase entry by stimulating Cdc25b expression. [source] HPV integration begins in the tonsillar crypt and leads to the alteration of p16, EGFR and c-myc during tumor formationINTERNATIONAL JOURNAL OF CANCER, Issue 7 2007Se-Heon Kim Abstract The prevalence of human papillomavirus (HPV) infection is high in the oropharyngeal mucosal regions, of which the tonsil is the most commonly affected. There may be a link between HPV and the pathogenesis of tonsillar cancer (TC), because of common anatomical characteristics between cervical and tonsillar cancer. We aimed to clarify whether HPV directly affects the oncogenesis and biologic behavior of TC by making a comparison between infection prevalence, physical status and viral loading numbers, and clinicopathologic prognostic factors. To compare HPV-related molecules between TC and tonsillitis (CFT), p16, survivin, HIF-1,, skp-1, cyclin A, cyclin B1, c-myc and EGFR were investigated. We observed a significant difference in HPV prevalence between 52 TCs and 69 CFTs (73.1% vs. 11.6%), and most of the HPVs were type 16 (87.2%) and nonepisomal (94.1%). Most TCs associated with HPV arose from the tonsillar crypts, and tended to be inverted and poorly differentiated. Compared with HPV-negative TC, HPV-positive TC showed a strong association with p16 overexpression (p < 0.0001), and an inverse association with EGFR amplification (p = 0.0478). HPV-16 integration status was strongly associated with c-myc amplification (p = 0.034) and HIF-1, overexpression (p = 0.022). HPV-16 integration could be directly related to tonsillar carcinogenesis initially in tonsillar crypts, followed by cell cycle aberration such as p16 overexpression related to the G1-S phase. © 2006 Wiley-Liss, Inc. [source] Alteration of subcellular and cellular expression patterns of cyclin B1 in renal cell carcinoma is significantly related to clinical progression and survival of patientsINTERNATIONAL JOURNAL OF CANCER, Issue 4 2006Stephen O. Ikuerowo Abstract Cyclin B1, identified as a regulator of late cell cycle, is involved in the development and progression of a variety of human malignancies. To clarify the role of cyclin B1 in the pathogenesis and prognosis of renal cell carcinoma (RCC), protein expression was compared with clinicopathological characteristics of patients as well as the long-term survival after surgical therapy. Expression analysis was carried out by immunohistochemistry and tissue microarray analysis. The microarrays that represented the primary tumors, their invasion front and normal peritumoral renal parenchyma contained 753 tissue cores obtained from 251 randomly selected nephrectomy specimens. Immunopositivity within the primary tumors was significantly associated with tumor stage (pT) (p < 0.01), lymph node status (pN) (p < 0.01) as well as the presence of systemic metastatic disease (p = 0.01). Subcellular expression in the cytoplasm of tumor cells significantly correlated with pT (p = 0.02) and pN (p = 0.03). When peritumoral tissue samples exhibited a relative amount of <10% of positively reacting epithelial cells, cyclin B positivity was identified to predict long-term survival of patients in univariate analysis (p < 0.01) whereas borderline significance was observed in multivariate statistical analysis (p = 0.05). Increased intratumoral cyclin B1 positivity and aberrant localization of signals within the cytoplasm of tumor cells is positively correlated with the tendency towards tumor progression, indicating the significant role of cyclin B1 in the development and pathogenesis of RCC. The result of uni- and multivariate statistical analysis suggests the prognostic value of cyclin B1 for RCC patients. © 2006 Wiley-Liss, Inc. [source] Aberrant p53 alters DNA damage checkpoints in response to cisplatin: Downregulation of CDK expression and activityINTERNATIONAL JOURNAL OF CANCER, Issue 5 2004Katharine H. Wrighton Abstract The p53 tumor suppressor protein is a critical mediator of cell cycle arrest and apoptosis in response to genotoxic stress. Abrogation of p53 function is a major feature of tumor development and may result in a compromised DNA-damage response. In our study, we examined the effect of expressing a human p53 cDNA, encoding a histidine to leucine amino acid substitution at codon 179 (H179L), on the ability of wild-type p53-containing NIH3T3 cells to respond to treatment with the chemotherapeutic cisplatin. After 72 hr of cisplatin treatment control cells underwent apoptosis preceded by a combination of S- and G2 arrest, as judged by flow cytometry of propidium iodide-stained cells, and TUNEL and caspase-3 assays. This correlated with increased expression of the pro-apoptotic protein Bax. In contrast, cells stably expressing H179L-p53 arrested in S-phase following cisplatin treatment, which correlated with a marked decrease in the expression of cdc2, cyclin B1 and cyclin A, and a decrease in CDK2 and cyclin A-associated kinase activity. Interestingly, H179L p53 expressing cells underwent apoptosis earlier than control cells, indicating that this aberrant p53 may enhance cisplatin chemosensitivity. These data suggest that dominant-negative p53 can influence the expression and activity of CDK complexes, thereby modifying cell behavior following cisplatin-induced genotoxicity. © 2004 Wiley-Liss, Inc. [source] 6-Dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human breast cancer cellsMOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 9 2010Ya-Ling Hsu Abstract This study is the first to investigate the anticancer effect of 6-dehydrogingerdione (DGE), an active constituent of dietary ginger, in human breast cancer MDA-MB-231 and MCF-7 cells. DGE exhibited effective cell growth inhibition by inducing cancer cells to undergo G2/M phase arrest and apoptosis. Blockade of cell cycle was associated with increased levels of p21, and reduced amounts of cyclin B1, cyclin A, Cdc2 and Cdc25C. DGE also enhanced the levels of inactivated phosphorylated Cdc2 and Cdc25C. DGE triggered the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in caspase-9 activation. We also found the generation of reactive oxygen species is a critical mediator in DGE-induced cell growth inhibition. DGE clearly increased the activation of apoptosis signal-regulating kinase 1 and c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase 1/2 (ERK1/2) and p38. In addition, antioxidants vitamin C and catalase significantly decreased DGE-mediated JNK activation and apoptosis. Moreover, blocking JNK by specific inhibitors suppressed DGE-triggered mitochondrial apoptotic pathway. Taken together, these findings suggest that a critical role for reactive oxygen species and JNK in DGE-mediated apoptosis of human breast cancer. [source] Molecular characterization and polyadenylation-regulated expression of cyclin B1 and Cdc2 in porcine oocytes and early parthenotesMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2010Ding-Xiao Zhang Meiotic maturation of mammalian oocytes is controlled by the maturation/M-phase promotion factor (MPF), a complex of Cdc2 kinase and cyclin B protein. To better understand the molecular mechanism of oocyte maturation, we characterized porcine cyclin B1 and Cdc2 genes, both of which are widely expressed in pig tissues. We further analyzed their expression profiles during in vitro maturation of pig oocyte and early embryonic development at both the mRNA and protein level. Two isoforms of cyclin B1, comprising the same open reading frame but differing in 3,-UTR length, were identified. Cyclin B1 transcripts was up-regulated after 30,hr of maturation, while Cdc2 mRNA levels were unchanged during maturation except for a sharp decline at 44,hr. Cyclin B1 protein synthesis increased with oocyte maturation. Cdc2 protein expression was relatively low during 0,18,hr, followed by a higher level of expression up to 44,hr of maturation. Poly(A)-test PCR clearly revealed that both cyclin B1 isoforms underwent cytoplasmic polyadenylation starting around 18,24,hr during maturation, while a substantial de-adenylation and degradation of Cdc2 isoforms were observed in metaphase II oocytes and during embryo development after parthenogenetic activation. Porcine MII oocytes derived from small follicles (,3,mm) and bad quality 2-cell parthenotes showed lower developmental competence and lower levels of cyclin B1 protein, and Cdc2 mRNA or both gene mRNAs, respectively, compared to their control counterparts. These results suggested that cyclin B1 was regulated posttranscriptionally by cytoplasmic polyadenylation during porcine oocyte maturation. Further, the decreased expression of maternal cyclin B1 and Cdc2 at the mRNA or protein level in developmentally incompetent oocytes and embryos was responsible for, at least in part, a profound defect in further embryonic development. Mol. Reprod. Dev. 77: 38,50, 2010. © 2009 Wiley-Liss, Inc. [source] Protein synthesis and mRNA storage in cattle oocytes maintained under meiotic block by roscovitine inhibition of MPF activityMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004Céline Vigneron Abstract Roscovitine, a specific inhibitor of MPF kinase activity, has been shown to block efficiently and reversibly the meiotic resumption of oocytes from different species, including cattle. In view to verify that oocytes maintain germinal vesicle like molecular activities under roscovitine treatment, we compared in the present study the M-phase Promoting Factor (MPF) and Mitogen Activated Protein (MAP) kinase activities; protein synthesis and phosphorylation patterns in oocytes and cumulus cells; and CDK1 and Cyclin B messengers storage under control culture and under roscovitine inhibition. We observed that roscovitine induced a full and reversible inhibition of MPF kinase activity and of the activating phosphorylation of both ERK1/2 MAPK. During in vivo maturation, there was a highly significant increase in the relative mRNA level of both cyclin B1 and CDK1 whereas during in vitro culture, the relative amount of CDK1 messenger was reduced. These messengers may be used as markers for the optimization of in vitro maturation treatment. Roscovitine reversibly prevented this drop in relative quantities of CDK1 messenger. Oocytes cultured in the presence of roscovitine maintained a GV like profile of protein synthesis except that two proteins of 48 and 64 kDa specific of matured oocytes also appeared under roscovitine treatment. However, roscovitine did not prevent most of the modifications of protein phosphorylation pattern observed during maturation. In conclusion, results of this study revealed that the use of roscovitine did not prevent all the events related to maturation of bovine oocytes. Mol. Reprod. Dev. 69: 457,465, 2004. © 2004 Wiley-Liss, Inc. [source] Immunohistochemical estimation of cell cycle entry and phase distribution in astrocytomas: applications in diagnostic neuropathologyNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 5 2005Ian S. Scott An immunohistochemical method for assessing cell cycle phase distribution in neurosurgical biopsies would enable such data to be incorporated into diagnostic algorithms for the estimation of prognosis and response to adjuvant chemotherapy in glial neoplasms, without the requirement for flow cytometric analysis. Paraffin-embedded sections of intracerebral gliomas (n = 48), consisting of diffuse astrocytoma (n = 9), anaplastic astrocytoma (n = 8) and glioblastoma (n = 31), were analysed by immunohistochemistry using markers of cell cycle entry, Mcm-2 and Ki67, and putative markers of cell cycle phase, cyclins D1 (G1-phase), cyclin A (S-phase), cyclin B1 (G2-phase) and phosphohistone H3 (Mitosis). Double labelling confocal microscopy confirmed that the phase markers were infrequently coexpressed. Cell cycle estimations by immunohistochemistry were corroborated by flow cytometric analysis. There was a significant increase in Mcm-2 (P < 0.0001), Ki67 (P < 0.0001), cyclin A (P < 0.0001) and cyclin B1 (P = 0.002) expression with increasing grade from diffuse astrocytoma through anaplastic astrocytoma to glioblastoma, suggesting that any of these four markers has potential as a marker of tumour grade. In a subset of glioblastomas (n = 16) for which accurate clinical follow-up data were available, there was a suggestion that the cyclin A:Mcm-2 labelling fraction might predict a relatively favourable response to radical radiotherapy. These provisional findings, however, require confirmation by a larger study. We conclude that it is feasible to obtain detailed cell cycle data by immunohistochemical analysis of tissue biopsies. Such information may facilitate tumour grading and may enable information of prognostic value to be obtained in the routine diagnostic laboratory. [source] Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle arrest and apoptosisTHE PROSTATE, Issue 4 2005Jasmin Bektic Abstract BACKGROUND RhoE/Rnd3, a recently described novel member of the Rho GTPases family, was discussed as a possible antagonist of the RhoA protein that stimulates cell cycle progression and is overexpressed and/or overactivated in prostate cancer. We investigated the expression of RhoE and its role in cell cycle regulation and apoptosis in the human prostate. METHODS RhoE expression in cell lines and tissue specimens was assessed by immunoblot analysis, real-time PCR (RT-PCR), and immunohistochemistry. To elucidate RhoE effects on the prostate, RhoE was cloned and overexpressed in DU-145 prostate cancer. Cell cycle modulation and apoptosis was investigated by immunoblot and FACS analysis. RESULTS Immunoblot analysis showed a strong RhoE signal in both, benign epithelial and stromal cells. In contrast, almost no protein was detected in various prostate cancer cells. On RT-PCR and microarray analysis, RhoE mRNA expression was significantly reduced in malignant tissue when compared to benign samples. RhoE immunostaining was strong in benign tissue, especially in prostate epithelial cells, whereas it was minimal or absent in malignant tissue. Forced RhoE overexpression in a prostate cancer cell line inhibits the expression of two proteins essential for G2/M transition, namely CDC2 and cyclin B1, and induces G2/M arrest. In addition, apoptotic cell death as measured by a cleavage product of caspase 3 is significantly increased in RhoE-overexpressing cells. CONCLUSION In conclusion, our findings suggest RhoE as a tumor suppressor gene that is downregulatated early in the development of prostate cancer. © 2005 Wiley-Liss, Inc. [source] Induction of cell apoptosis in non-small cell lung cancer cells by cyclin A1 small interfering RNACANCER SCIENCE, Issue 10 2006Nam Hoon Cho Cyclin A1 and cyclin B1 are overexpressed in various tumors but are present at low levels in normal tissues. Cyclin A1 is restricted to germ cells undergoing meiosis. In order to explore the possibility of using cyclin A1 and cyclin B1 as anticancer targets, we knocked them down in two lung cancer cell lines, H157 and H596, using siRNA. As with cyclin A1 siRNA in lung cancer cell lines, cyclin B1, Cdc2 and CDK2 were all significantly downregulated. The S phase fraction increased significantly, and they eventually underwent apoptosis by way of downregulated intrinsic apoptotic pathways and modulators with upregulated extrinsic apoptotic pathways. Our study suggests that cyclin A1 might be a promising anticancer target specific to lung cancer. (Cancer Sci 2006; 97: 1082,1092) [source] CD34+ cells derived from fetal liver contained a high proportion of immature megakaryocytic progenitor cellsEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 5 2000Dong-Chu Ma Abstract: Endoreplication and maturation of the megakaryocyte (MK) may be retarded or delayed during ontogenesis. In this study, CD34+ cells were isolated from both human fetal liver and adult bone marrow and incubated with thrombopoietin (TPO). The cell number, morphological characteristics, platelet-associated antigen phenotype, maturation stage and DNA ploidy of CD41+cells were examined from day 0 to day 12 in culture. 1) TPO stimulated the proliferation of fetal liver (FL)-derived CD34+ cells with a mean 73.14-fold increase of CD41+ cells after 12 d in culture. Adult BM-derived CD34+ cells increased only slightly, with a mean 8.18-fold increase of CD41+ cells. 2) Although the membrane phenotype of both FL CD34+ -derived MKs and BM CD34+ -derived MKs analyzed with CD41a, CD42a, CD61 and CD34 were similar, all FL CD34+ -derived MKs were in maturation stage I and II and in low ploidy (<4N) class. By comparison, BM CD34+ MKs possessed 15% MKs in maturation stage III and IV and with 23% MKs in high ploidy class (>4N). 3) Most of cultured FL-derived CD34+ cells did not have a well developed demarcation system (DM) and numerous ,-granules after 12 d incubation. von Willebrand factor (vWF) appeared earlier on the cultured BM-derived CD34+ cells than on FL-derived CD34+ cells. 4) The expression of both cyclin E and cyclin B1 progressively increased in FL CD34+cells induced by TPO during 12 d in culture. 5) The expression of cyclin D1 gradually decreased in FL CD34+cells induced by TPO over 12 d incubation. 6) Immunocytochemical analysis showed that cyclin D3 was detected only in cytoplasm of cultured FL-derived CD34+ cells, whereas in both cytoplasm and nuclei of cultured BM-derived CD34+ cells. These data suggest that FL-derived CD34+ cells contain a high proportion of immature megakaryocytic progenitor cells. It further suggests that TPO can push these progenitor cells into proliferation by upregulating the expression of cyclins B1 and E, and drive a high proportion of cells into megakaryocytic lineage. [source] |